import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from torch import nn from PIL import Image from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic") model = SegformerForSemanticSegmentation.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic") def sidewalk_palette(): """Sidewalk palette that maps each class to RGB values.""" return [ [0, 0, 0], [216, 82, 24], [255, 255, 0], [125, 46, 141], [118, 171, 47], [161, 19, 46], [255, 0, 0], [0, 128, 128], [190, 190, 0], [0, 255, 0], [0, 0, 255], [170, 0, 255], [84, 84, 0], [84, 170, 0], [84, 255, 0], [170, 84, 0], [170, 170, 0], [170, 255, 0], [255, 84, 0], [255, 170, 0], [255, 255, 0], [33, 138, 200], [0, 170, 127], [0, 255, 127], [84, 0, 127], [84, 84, 127], [84, 170, 127], [84, 255, 127], [170, 0, 127], [170, 84, 127], [170, 170, 127], [170, 255, 127], [255, 0, 127], [255, 84, 127], [255, 170, 127], ] labels_list = [] with open(r'labels.txt', 'r') as fp: labels_list.extend(line[:-1] for line in fp) colormap = np.asarray(sidewalk_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def main(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) # First, rescale logits to original image size upsampled_logits = nn.functional.interpolate( logits, size=input_img.size[::-1], # (height, width) mode='bilinear', align_corners=False ) # Second, apply argmax on the class dimension pred_seg = upsampled_logits.argmax(dim=1)[0] color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) # height, width, 3 palette = np.array(sidewalk_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color # Show image + mask img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = img.astype(np.uint8) return draw_plot(pred_img, pred_seg) demo = gr.Interface(main, gr.Image(shape=(200, 200)), outputs=['plot'], examples=["test.jpg"], allow_flagging='never') demo.launch()