## 什么是HuggingFace Agent 使用大模型作为Agent,仅需自然语言就可调用HuggingFace中的模型,目前支持两种模式: - run模式:单轮对话,没有上下文,单个prompt多tool组合调用能力好 - chat模式:多轮对话,有上下文,单次调用能力好,可能需要多次prompt实现多tool组合调用 > 详见官方文档:[Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents) ## 使用通义千问作为Agent ### 安装依赖 ``` pip install transformers ``` ### 构建QWenAgent 以下代码便可实现QWenAgent: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, Agent from transformers.generation import GenerationConfig class QWenAgent(Agent): """ Agent that uses QWen model and tokenizer to generate code. Args: chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py agent = QWenAgent() agent.run("Draw me a picture of rivers and lakes.") ``` """ def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): checkpoint = "Qwen/Qwen-7B-Chat" self.tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", trust_remote_code=True).cuda().eval() self.model.generation_config = GenerationConfig.from_pretrained(checkpoint, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参 self.model.generation_config.do_sample = False # greedy super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_one(self, prompt, stop): # "Human:" 和 "Assistant:" 曾为通义千问的特殊保留字,需要替换为 "_HUMAN_:" 和 "_ASSISTANT_:"。这一问题将在未来版本修复。 prompt = prompt.replace("Human:", "_HUMAN_:").replace("Assistant:", "_ASSISTANT_:") stop = [item.replace("Human:", "_HUMAN_:").replace("Assistant:", "_ASSISTANT_:") for item in stop] result, _ = self.model.chat(self.tokenizer, prompt, history=None) for stop_seq in stop: if result.endswith(stop_seq): result = result[: -len(stop_seq)] result = result.replace("_HUMAN_:", "Human:").replace("_ASSISTANT_:", "Assistant:") return result agent = QWenAgent() agent.run("Draw me a picture of rivers and lakes.") ``` ### 使用示例 ```python agent = QWenAgent() agent.run("generate an image of panda", remote=True) ``` ![](../assets/hfagent_run.png) ![](../assets/hfagent_chat_1.png) ![](../assets/hfagent_chat_2.png) > 更多玩法参考HuggingFace官方文档[Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents) ## Tools ### Tools支持 HuggingFace Agent官方14个tool: - **Document question answering**: given a document (such as a PDF) in image format, answer a question on this document (Donut) - **Text question answering**: given a long text and a question, answer the question in the text (Flan-T5) - **Unconditional image captioning**: Caption the image! (BLIP) - **Image question answering**: given an image, answer a question on this image (VILT) - **Image segmentation**: given an image and a prompt, output the segmentation mask of that prompt (CLIPSeg) - **Speech to text**: given an audio recording of a person talking, transcribe the speech into text (Whisper) - **Text to speech**: convert text to speech (SpeechT5) - **Zero-shot text classification**: given a text and a list of labels, identify to which label the text corresponds the most (BART) - **Text summarization**: summarize a long text in one or a few sentences (BART) - **Translation**: translate the text into a given language (NLLB) - **Text downloader**: to download a text from a web URL - **Text to image**: generate an image according to a prompt, leveraging stable diffusion - **Image transformation**: transforms an image - **Text to video**: generate a small video according to a prompt, leveraging damo-vilab ### Tools模型部署 部分工具涉及的模型HuggingFace已进行在线部署,仅需设置remote=True便可实现在线调用: > agent.run(xxx, remote=True) HuggingFace没有在线部署的模型会自动下载checkpoint进行本地inference 网络原因偶尔连不上HuggingFace,请多次尝试