# 4/28/2024 # This version added saving chat history to a log file # Updated the GPT model to gpt-4 # Add timestamp and ip address # 2/23/2024 # This version uses different method in llama index to define llm model # Removed deprecated classes and replaced with newest dependencies import openai import json import gradio as gr from openai import OpenAI #from langchain_community.chat_models import ChatOpenAI from langchain_community.chat_models.openai import ChatOpenAI # rebuild storage context and load knowledge index # from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext from llama_index import StorageContext, load_index_from_storage, ServiceContext from llama_index.llms import OpenAI from datetime import datetime; import socket; storage_context = StorageContext.from_defaults(persist_dir='./') # gpt-3.5_turbo is the current default model llm_predictor = OpenAI(temperature=0.5, model_name="gpt-4") service_context = ServiceContext.from_defaults(llm=llm_predictor) index = load_index_from_storage(storage_context, service_context=service_context) class Chatbot: def __init__(self, api_key, index): self.index = index openai.api_key = api_key self.chat_history = [] self.history_file = f"chat_log.json" def generate_response(self, user_input): query_engine = index.as_query_engine() response = query_engine.query(user_input) # generate response message = {"role": "assistant", "content": response.response} return message def load_chat_history(self): try: with open(self.history_file, 'r') as f: self.chat_history = json.load(f) except FileNotFoundError: pass def append_chat_history(self, user_input, output): # append chat history dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(dt) hostname = socket.gethostname() ip = socket.gethostbyname(hostname) print(ip) #self.chat_history.append({"role": "datetime", "content": dt}) #self.chat_history.append({"role": "IP", "content": ip}) #self.chat_history.append({"role": "user", "content": user_input}) #self.chat_history.append({"role": "assistant", "content": output}) # save the data in dictionary format dictionary = { "datetime": dt, "ip": ip, "user": user_input, "assistant": output } self.chat_history.append(dictionary) def save_chat_history(self): with open(self.history_file, 'w') as f: json.dump(self.chat_history, f) def create_bot(user_input): bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index) bot.load_chat_history(); if user_input: # use moderations endpoint to check input client = openai.OpenAI() response_mod = client.moderations.create(input=user_input) response_dict = response_mod.model_dump() flagged = response_dict['results'][0]['flagged'] #print("Flagged:", flagged) if not flagged: response_bot = bot.generate_response(user_input) output = response_bot['content'] else: output = "Invalid request." bot.append_chat_history(user_input, output) bot.save_chat_history() return output inputs = gr.inputs.Textbox(lines=7, label="Ask questions related to the course. For example, when is the due date for Excel Module 9, what is the assignment late policy, how to use NPV function in Excel, etc.") outputs = gr.outputs.Textbox(label="Response") gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA", description="This is a prototype of learning assistant designed for MIS 320 online section (Version 2.0). Powered by ChatGPT.\nNote: ChatGPT can make mistakes. Consider checking important information.", theme="compact").launch(share=True)