import gym from ditk import logging from ding.model import PPG from ding.policy import PPGOffPolicy from ding.envs import DingEnvWrapper, BaseEnvManagerV2 from ding.data import DequeBuffer from ding.data.buffer.middleware import use_time_check, sample_range_view from ding.config import compile_config from ding.framework import task from ding.framework.context import OnlineRLContext from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ CkptSaver, gae_estimator from ding.utils import set_pkg_seed from dizoo.classic_control.cartpole.config.cartpole_ppg_offpolicy_config import main_config, create_config def main(): logging.getLogger().setLevel(logging.INFO) cfg = compile_config(main_config, create_cfg=create_config, auto=True) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env = BaseEnvManagerV2( env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager ) evaluator_env = BaseEnvManagerV2( env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager ) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = PPG(**cfg.policy.model) buffer_cfg = cfg.policy.other.replay_buffer max_size = max(buffer_cfg.policy.replay_buffer_size, buffer_cfg.value.replay_buffer_size) buffer_ = DequeBuffer(size=max_size) policy_buffer = buffer_.view() # shallow copy policy_buffer.use(use_time_check(policy_buffer, max_use=buffer_cfg.policy.max_use)) policy_buffer.use(sample_range_view(policy_buffer, start=-buffer_cfg.policy.replay_buffer_size)) value_buffer = buffer_.view() value_buffer.use(use_time_check(value_buffer, max_use=buffer_cfg.value.max_use)) value_buffer.use(sample_range_view(value_buffer, start=-buffer_cfg.value.replay_buffer_size)) policy = PPGOffPolicy(cfg.policy, model=model) task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(gae_estimator(cfg, policy.collect_mode, buffer_)) task.use(OffPolicyLearner(cfg, policy.learn_mode, {'policy': policy_buffer, 'value': value_buffer})) task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) task.run() if __name__ == "__main__": main()