from typing import Optional, Union, List from ditk import logging from easydict import EasyDict import os import numpy as np import torch import treetensor.torch as ttorch from ding.framework import task, OnlineRLContext from ding.framework.middleware import CkptSaver, \ wandb_online_logger, offline_data_saver, termination_checker, interaction_evaluator, StepCollector, data_pusher, \ OffPolicyLearner, final_ctx_saver, nstep_reward_enhancer, eps_greedy_handler from ding.envs import BaseEnv from ding.envs import setup_ding_env_manager from ding.policy import DQNPolicy from ding.utils import set_pkg_seed from ding.utils import get_env_fps, render from ding.config import save_config_py, compile_config from ding.model import DQN from ding.model import model_wrap from ding.data import DequeBuffer from ding.bonus.common import TrainingReturn, EvalReturn from ding.config.example.DQN import supported_env_cfg from ding.config.example.DQN import supported_env class DQNAgent: """ Overview: Class of agent for training, evaluation and deployment of Reinforcement learning algorithm Deep Q-Learning(DQN). For more information about the system design of RL agent, please refer to \ . Interface: ``__init__``, ``train``, ``deploy``, ``collect_data``, ``batch_evaluate``, ``best`` """ supported_env_list = list(supported_env_cfg.keys()) """ Overview: List of supported envs. Examples: >>> from ding.bonus.dqn import DQNAgent >>> print(DQNAgent.supported_env_list) """ def __init__( self, env_id: str = None, env: BaseEnv = None, seed: int = 0, exp_name: str = None, model: Optional[torch.nn.Module] = None, cfg: Optional[Union[EasyDict, dict]] = None, policy_state_dict: str = None, ) -> None: """ Overview: Initialize agent for DQN algorithm. Arguments: - env_id (:obj:`str`): The environment id, which is a registered environment name in gym or gymnasium. \ If ``env_id`` is not specified, ``env_id`` in ``cfg.env`` must be specified. \ If ``env_id`` is specified, ``env_id`` in ``cfg.env`` will be ignored. \ ``env_id`` should be one of the supported envs, which can be found in ``supported_env_list``. - env (:obj:`BaseEnv`): The environment instance for training and evaluation. \ If ``env`` is not specified, `env_id`` or ``cfg.env.env_id`` must be specified. \ ``env_id`` or ``cfg.env.env_id`` will be used to create environment instance. \ If ``env`` is specified, ``env_id`` and ``cfg.env.env_id`` will be ignored. - seed (:obj:`int`): The random seed, which is set before running the program. \ Default to 0. - exp_name (:obj:`str`): The name of this experiment, which will be used to create the folder to save \ log data. Default to None. If not specified, the folder name will be ``env_id``-``algorithm``. - model (:obj:`torch.nn.Module`): The model of DQN algorithm, which should be an instance of class \ :class:`ding.model.DQN`. \ If not specified, a default model will be generated according to the configuration. - cfg (:obj:Union[EasyDict, dict]): The configuration of DQN algorithm, which is a dict. \ Default to None. If not specified, the default configuration will be used. \ The default configuration can be found in ``ding/config/example/DQN/gym_lunarlander_v2.py``. - policy_state_dict (:obj:`str`): The path of policy state dict saved by PyTorch a in local file. \ If specified, the policy will be loaded from this file. Default to None. .. note:: An RL Agent Instance can be initialized in two basic ways. \ For example, we have an environment with id ``LunarLander-v2`` registered in gym, \ and we want to train an agent with DQN algorithm with default configuration. \ Then we can initialize the agent in the following ways: >>> agent = DQNAgent(env_id='LunarLander-v2') or, if we want can specify the env_id in the configuration: >>> cfg = {'env': {'env_id': 'LunarLander-v2'}, 'policy': ...... } >>> agent = DQNAgent(cfg=cfg) There are also other arguments to specify the agent when initializing. For example, if we want to specify the environment instance: >>> env = CustomizedEnv('LunarLander-v2') >>> agent = DQNAgent(cfg=cfg, env=env) or, if we want to specify the model: >>> model = DQN(**cfg.policy.model) >>> agent = DQNAgent(cfg=cfg, model=model) or, if we want to reload the policy from a saved policy state dict: >>> agent = DQNAgent(cfg=cfg, policy_state_dict='LunarLander-v2.pth.tar') Make sure that the configuration is consistent with the saved policy state dict. """ assert env_id is not None or cfg is not None, "Please specify env_id or cfg." if cfg is not None and not isinstance(cfg, EasyDict): cfg = EasyDict(cfg) if env_id is not None: assert env_id in DQNAgent.supported_env_list, "Please use supported envs: {}".format( DQNAgent.supported_env_list ) if cfg is None: cfg = supported_env_cfg[env_id] else: assert cfg.env.env_id == env_id, "env_id in cfg should be the same as env_id in args." else: assert hasattr(cfg.env, "env_id"), "Please specify env_id in cfg." assert cfg.env.env_id in DQNAgent.supported_env_list, "Please use supported envs: {}".format( DQNAgent.supported_env_list ) default_policy_config = EasyDict({"policy": DQNPolicy.default_config()}) default_policy_config.update(cfg) cfg = default_policy_config if exp_name is not None: cfg.exp_name = exp_name self.cfg = compile_config(cfg, policy=DQNPolicy) self.exp_name = self.cfg.exp_name if env is None: self.env = supported_env[cfg.env.env_id](cfg=cfg.env) else: assert isinstance(env, BaseEnv), "Please use BaseEnv as env data type." self.env = env logging.getLogger().setLevel(logging.INFO) self.seed = seed set_pkg_seed(self.seed, use_cuda=self.cfg.policy.cuda) if not os.path.exists(self.exp_name): os.makedirs(self.exp_name) save_config_py(self.cfg, os.path.join(self.exp_name, 'policy_config.py')) if model is None: model = DQN(**self.cfg.policy.model) self.buffer_ = DequeBuffer(size=self.cfg.policy.other.replay_buffer.replay_buffer_size) self.policy = DQNPolicy(self.cfg.policy, model=model) if policy_state_dict is not None: self.policy.learn_mode.load_state_dict(policy_state_dict) self.checkpoint_save_dir = os.path.join(self.exp_name, "ckpt") def train( self, step: int = int(1e7), collector_env_num: int = None, evaluator_env_num: int = None, n_iter_save_ckpt: int = 1000, context: Optional[str] = None, debug: bool = False, wandb_sweep: bool = False, ) -> TrainingReturn: """ Overview: Train the agent with DQN algorithm for ``step`` iterations with ``collector_env_num`` collector \ environments and ``evaluator_env_num`` evaluator environments. Information during training will be \ recorded and saved by wandb. Arguments: - step (:obj:`int`): The total training environment steps of all collector environments. Default to 1e7. - collector_env_num (:obj:`int`): The collector environment number. Default to None. \ If not specified, it will be set according to the configuration. - evaluator_env_num (:obj:`int`): The evaluator environment number. Default to None. \ If not specified, it will be set according to the configuration. - n_iter_save_ckpt (:obj:`int`): The frequency of saving checkpoint every training iteration. \ Default to 1000. - context (:obj:`str`): The multi-process context of the environment manager. Default to None. \ It can be specified as ``spawn``, ``fork`` or ``forkserver``. - debug (:obj:`bool`): Whether to use debug mode in the environment manager. Default to False. \ If set True, base environment manager will be used for easy debugging. Otherwise, \ subprocess environment manager will be used. - wandb_sweep (:obj:`bool`): Whether to use wandb sweep, \ which is a hyper-parameter optimization process for seeking the best configurations. \ Default to False. If True, the wandb sweep id will be used as the experiment name. Returns: - (:obj:`TrainingReturn`): The training result, of which the attributions are: - wandb_url (:obj:`str`): The weight & biases (wandb) project url of the trainning experiment. """ if debug: logging.getLogger().setLevel(logging.DEBUG) logging.debug(self.policy._model) # define env and policy collector_env_num = collector_env_num if collector_env_num else self.cfg.env.collector_env_num evaluator_env_num = evaluator_env_num if evaluator_env_num else self.cfg.env.evaluator_env_num collector_env = setup_ding_env_manager(self.env, collector_env_num, context, debug, 'collector') evaluator_env = setup_ding_env_manager(self.env, evaluator_env_num, context, debug, 'evaluator') with task.start(ctx=OnlineRLContext()): task.use( interaction_evaluator( self.cfg, self.policy.eval_mode, evaluator_env, render=self.cfg.policy.eval.render if hasattr(self.cfg.policy.eval, "render") else False ) ) task.use(CkptSaver(policy=self.policy, save_dir=self.checkpoint_save_dir, train_freq=n_iter_save_ckpt)) task.use(eps_greedy_handler(self.cfg)) task.use( StepCollector( self.cfg, self.policy.collect_mode, collector_env, random_collect_size=self.cfg.policy.random_collect_size if hasattr(self.cfg.policy, 'random_collect_size') else 0, ) ) if "nstep" in self.cfg.policy and self.cfg.policy.nstep > 1: task.use(nstep_reward_enhancer(self.cfg)) task.use(data_pusher(self.cfg, self.buffer_)) task.use(OffPolicyLearner(self.cfg, self.policy.learn_mode, self.buffer_)) task.use( wandb_online_logger( metric_list=self.policy._monitor_vars_learn(), model=self.policy._model, anonymous=True, project_name=self.exp_name, wandb_sweep=wandb_sweep, ) ) task.use(termination_checker(max_env_step=step)) task.use(final_ctx_saver(name=self.exp_name)) task.run() return TrainingReturn(wandb_url=task.ctx.wandb_url) def deploy( self, enable_save_replay: bool = False, concatenate_all_replay: bool = False, replay_save_path: str = None, seed: Optional[Union[int, List]] = None, debug: bool = False ) -> EvalReturn: """ Overview: Deploy the agent with DQN algorithm by interacting with the environment, during which the replay video \ can be saved if ``enable_save_replay`` is True. The evaluation result will be returned. Arguments: - enable_save_replay (:obj:`bool`): Whether to save the replay video. Default to False. - concatenate_all_replay (:obj:`bool`): Whether to concatenate all replay videos into one video. \ Default to False. If ``enable_save_replay`` is False, this argument will be ignored. \ If ``enable_save_replay`` is True and ``concatenate_all_replay`` is False, \ the replay video of each episode will be saved separately. - replay_save_path (:obj:`str`): The path to save the replay video. Default to None. \ If not specified, the video will be saved in ``exp_name/videos``. - seed (:obj:`Union[int, List]`): The random seed, which is set before running the program. \ Default to None. If not specified, ``self.seed`` will be used. \ If ``seed`` is an integer, the agent will be deployed once. \ If ``seed`` is a list of integers, the agent will be deployed once for each seed in the list. - debug (:obj:`bool`): Whether to use debug mode in the environment manager. Default to False. \ If set True, base environment manager will be used for easy debugging. Otherwise, \ subprocess environment manager will be used. Returns: - (:obj:`EvalReturn`): The evaluation result, of which the attributions are: - eval_value (:obj:`np.float32`): The mean of evaluation return. - eval_value_std (:obj:`np.float32`): The standard deviation of evaluation return. """ if debug: logging.getLogger().setLevel(logging.DEBUG) # define env and policy env = self.env.clone(caller='evaluator') if seed is not None and isinstance(seed, int): seeds = [seed] elif seed is not None and isinstance(seed, list): seeds = seed else: seeds = [self.seed] returns = [] images = [] if enable_save_replay: replay_save_path = os.path.join(self.exp_name, 'videos') if replay_save_path is None else replay_save_path env.enable_save_replay(replay_path=replay_save_path) else: logging.warning('No video would be generated during the deploy.') if concatenate_all_replay: logging.warning('concatenate_all_replay is set to False because enable_save_replay is False.') concatenate_all_replay = False def single_env_forward_wrapper(forward_fn, cuda=True): forward_fn = model_wrap(forward_fn, wrapper_name='argmax_sample').forward def _forward(obs): # unsqueeze means add batch dim, i.e. (O, ) -> (1, O) obs = ttorch.as_tensor(obs).unsqueeze(0) if cuda and torch.cuda.is_available(): obs = obs.cuda() action = forward_fn(obs)["action"] # squeeze means delete batch dim, i.e. (1, A) -> (A, ) action = action.squeeze(0).detach().cpu().numpy() return action return _forward forward_fn = single_env_forward_wrapper(self.policy._model, self.cfg.policy.cuda) # reset first to make sure the env is in the initial state # env will be reset again in the main loop env.reset() for seed in seeds: env.seed(seed, dynamic_seed=False) return_ = 0. step = 0 obs = env.reset() images.append(render(env)[None]) if concatenate_all_replay else None while True: action = forward_fn(obs) obs, rew, done, info = env.step(action) images.append(render(env)[None]) if concatenate_all_replay else None return_ += rew step += 1 if done: break logging.info(f'DQN deploy is finished, final episode return with {step} steps is: {return_}') returns.append(return_) env.close() if concatenate_all_replay: images = np.concatenate(images, axis=0) import imageio imageio.mimwrite(os.path.join(replay_save_path, 'deploy.mp4'), images, fps=get_env_fps(env)) return EvalReturn(eval_value=np.mean(returns), eval_value_std=np.std(returns)) def collect_data( self, env_num: int = 8, save_data_path: Optional[str] = None, n_sample: Optional[int] = None, n_episode: Optional[int] = None, context: Optional[str] = None, debug: bool = False ) -> None: """ Overview: Collect data with DQN algorithm for ``n_episode`` episodes with ``env_num`` collector environments. \ The collected data will be saved in ``save_data_path`` if specified, otherwise it will be saved in \ ``exp_name/demo_data``. Arguments: - env_num (:obj:`int`): The number of collector environments. Default to 8. - save_data_path (:obj:`str`): The path to save the collected data. Default to None. \ If not specified, the data will be saved in ``exp_name/demo_data``. - n_sample (:obj:`int`): The number of samples to collect. Default to None. \ If not specified, ``n_episode`` must be specified. - n_episode (:obj:`int`): The number of episodes to collect. Default to None. \ If not specified, ``n_sample`` must be specified. - context (:obj:`str`): The multi-process context of the environment manager. Default to None. \ It can be specified as ``spawn``, ``fork`` or ``forkserver``. - debug (:obj:`bool`): Whether to use debug mode in the environment manager. Default to False. \ If set True, base environment manager will be used for easy debugging. Otherwise, \ subprocess environment manager will be used. """ if debug: logging.getLogger().setLevel(logging.DEBUG) if n_episode is not None: raise NotImplementedError # define env and policy env_num = env_num if env_num else self.cfg.env.collector_env_num env = setup_ding_env_manager(self.env, env_num, context, debug, 'collector') if save_data_path is None: save_data_path = os.path.join(self.exp_name, 'demo_data') # main execution task with task.start(ctx=OnlineRLContext()): task.use( StepCollector( self.cfg, self.policy.collect_mode, env, random_collect_size=self.cfg.policy.random_collect_size ) ) task.use(offline_data_saver(save_data_path, data_type='hdf5')) task.run(max_step=1) logging.info( f'DQN collecting is finished, more than {n_sample} samples are collected and saved in `{save_data_path}`' ) def batch_evaluate( self, env_num: int = 4, n_evaluator_episode: int = 4, context: Optional[str] = None, debug: bool = False ) -> EvalReturn: """ Overview: Evaluate the agent with DQN algorithm for ``n_evaluator_episode`` episodes with ``env_num`` evaluator \ environments. The evaluation result will be returned. The difference between methods ``batch_evaluate`` and ``deploy`` is that ``batch_evaluate`` will create \ multiple evaluator environments to evaluate the agent to get an average performance, while ``deploy`` \ will only create one evaluator environment to evaluate the agent and save the replay video. Arguments: - env_num (:obj:`int`): The number of evaluator environments. Default to 4. - n_evaluator_episode (:obj:`int`): The number of episodes to evaluate. Default to 4. - context (:obj:`str`): The multi-process context of the environment manager. Default to None. \ It can be specified as ``spawn``, ``fork`` or ``forkserver``. - debug (:obj:`bool`): Whether to use debug mode in the environment manager. Default to False. \ If set True, base environment manager will be used for easy debugging. Otherwise, \ subprocess environment manager will be used. Returns: - (:obj:`EvalReturn`): The evaluation result, of which the attributions are: - eval_value (:obj:`np.float32`): The mean of evaluation return. - eval_value_std (:obj:`np.float32`): The standard deviation of evaluation return. """ if debug: logging.getLogger().setLevel(logging.DEBUG) # define env and policy env_num = env_num if env_num else self.cfg.env.evaluator_env_num env = setup_ding_env_manager(self.env, env_num, context, debug, 'evaluator') # reset first to make sure the env is in the initial state # env will be reset again in the main loop env.launch() env.reset() evaluate_cfg = self.cfg evaluate_cfg.env.n_evaluator_episode = n_evaluator_episode # main execution task with task.start(ctx=OnlineRLContext()): task.use(interaction_evaluator(self.cfg, self.policy.eval_mode, env)) task.run(max_step=1) return EvalReturn(eval_value=task.ctx.eval_value, eval_value_std=task.ctx.eval_value_std) @property def best(self) -> 'DQNAgent': """ Overview: Load the best model from the checkpoint directory, \ which is by default in folder ``exp_name/ckpt/eval.pth.tar``. \ The return value is the agent with the best model. Returns: - (:obj:`DQNAgent`): The agent with the best model. Examples: >>> agent = DQNAgent(env_id='LunarLander-v2') >>> agent.train() >>> agent = agent.best .. note:: The best model is the model with the highest evaluation return. If this method is called, the current \ model will be replaced by the best model. """ best_model_file_path = os.path.join(self.checkpoint_save_dir, "eval.pth.tar") # Load best model if it exists if os.path.exists(best_model_file_path): policy_state_dict = torch.load(best_model_file_path, map_location=torch.device("cpu")) self.policy.learn_mode.load_state_dict(policy_state_dict) return self