import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import os class CoupledHalfCheetah(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, **kwargs): mujoco_env.MujocoEnv.__init__( self, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'coupled_half_cheetah.xml'), 5 ) utils.EzPickle.__init__(self) def step(self, action): xposbefore1 = self.sim.data.qpos[0] xposbefore2 = self.sim.data.qpos[len(self.sim.data.qpos) // 2] self.do_simulation(action, self.frame_skip) xposafter1 = self.sim.data.qpos[0] xposafter2 = self.sim.data.qpos[len(self.sim.data.qpos) // 2] ob = self._get_obs() reward_ctrl1 = -0.1 * np.square(action[0:len(action) // 2]).sum() reward_ctrl2 = -0.1 * np.square(action[len(action) // 2:]).sum() reward_run1 = (xposafter1 - xposbefore1) / self.dt reward_run2 = (xposafter2 - xposbefore2) / self.dt reward = (reward_ctrl1 + reward_ctrl2) / 2.0 + (reward_run1 + reward_run2) / 2.0 done = False return ob, reward, done, dict( reward_run1=reward_run1, reward_ctrl1=reward_ctrl1, reward_run2=reward_run2, reward_ctrl2=reward_ctrl2 ) def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[1:], self.sim.data.qvel.flat, ]) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform(low=-.1, high=.1, size=self.model.nq) qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.distance = self.model.stat.extent * 0.5 def get_env_info(self): return {"episode_limit": self.episode_limit}