from easydict import EasyDict walker2d_gail_ddpg_config = dict( exp_name='walker2d_gail_ddpg_seed0', env=dict( env_id='Walker2d-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, ), reward_model=dict( input_size=23, hidden_size=256, batch_size=64, learning_rate=1e-3, update_per_collect=100, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='data_path_placeholder+/reward_model/ckpt/ckpt_best.pth.tar', # Users should add their own data path here. Data path should lead to a file to store data or load the stored data. # Absolute path is recommended. # In DI-engine, it is usually located in ``exp_name`` directory data_path='data_path_placeholder', collect_count=100000, ), policy=dict( # state_dict of the policy. # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. load_path='walker2d_ddpg_gail/ckpt/ckpt_best.pth.tar', cuda=True, on_policy=False, random_collect_size=25000, model=dict( obs_shape=17, action_shape=6, twin_critic=False, actor_head_hidden_size=256, critic_head_hidden_size=256, action_space='regression', ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_actor=1e-3, learning_rate_critic=1e-3, ignore_done=False, target_theta=0.005, discount_factor=0.99, actor_update_freq=1, noise=False, ), collect=dict( n_sample=64, unroll_len=1, noise_sigma=0.1, ), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ) ) walker2d_gail_ddpg_config = EasyDict(walker2d_gail_ddpg_config) main_config = walker2d_gail_ddpg_config walker2d_gail_ddpg_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='ddpg', import_names=['ding.policy.ddpg'], ), replay_buffer=dict(type='naive', ), ) walker2d_gail_ddpg_create_config = EasyDict(walker2d_gail_ddpg_create_config) create_config = walker2d_gail_ddpg_create_config if __name__ == "__main__": # or you can enter `ding -m serial_gail -c walker2d_gail_ddpg_config.py -s 0` # then input the config you used to generate your expert model in the path mentioned above # e.g. walker2d_ddpg_config.py from ding.entry import serial_pipeline_gail from dizoo.mujoco.config.walker2d_ddpg_config import walker2d_ddpg_config, walker2d_ddpg_create_config expert_main_config = walker2d_ddpg_config expert_create_config = walker2d_ddpg_create_config serial_pipeline_gail( [main_config, create_config], [expert_main_config, expert_create_config], max_env_step=1000000, seed=0, collect_data=True )