from easydict import EasyDict qbert_acer_config = dict( exp_name='qbert_acer_seed0', env=dict( collector_env_num=16, evaluator_env_num=8, n_evaluator_episode=8, stop_value=int(1e6), env_id='QbertNoFrameskip-v4', #'ALE/Qbert-v5' is available. But special setting is needed after gym make. frame_stack=4, manager=dict(shared_memory=False, ) ), policy=dict( cuda=True, priority=False, model=dict( obs_shape=[4, 84, 84], action_shape=6, encoder_hidden_size_list=[128, 128, 512], critic_head_hidden_size=512, critic_head_layer_num=2, actor_head_hidden_size=512, actor_head_layer_num=2 ), unroll_len=64, learn=dict( # (int) collect n_sample data, train model update_per_collect times # here we follow impala serial pipeline update_per_collect=10, # (int) the number of data for a train iteration batch_size=64, # grad_clip_type='clip_norm', learning_rate_actor=0.0001, learning_rate_critic=0.0003, # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 entropy_weight=0.01, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.99, # (float) additional discounting parameter trust_region=True, # (float) clip ratio of importance weights c_clip_ratio=10, ), collect=dict( # (int) collect n_sample data, train model n_iteration times n_sample=64, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.99, collector=dict(collect_print_freq=1000, ), ), eval=dict(evaluator=dict(eval_freq=1000, )), other=dict(replay_buffer=dict(replay_buffer_size=3000, ), ), ), ) main_config = EasyDict(qbert_acer_config) qbert_acer_create_config = dict( env=dict( type='atari', import_names=['dizoo.atari.envs.atari_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='acer'), ) create_config = EasyDict(qbert_acer_create_config) if __name__ == "__main__": # or you can enter ding -m serial -c qbert_acer_config.py -s 0 from ding.entry import serial_pipeline serial_pipeline([main_config, create_config], seed=0)