import pytest import torch from ding.torch_utils import is_differentiable from ding.model.template import MADQN @pytest.mark.unittest def test_madqn(): agent_num, bs, T = 4, 3, 8 obs_dim, global_obs_dim, action_dim = 32, 32 * 4, 9 embedding_dim = 64 madqn_model = MADQN( agent_num=agent_num, obs_shape=obs_dim, action_shape=action_dim, hidden_size_list=[embedding_dim, embedding_dim], global_obs_shape=global_obs_dim ) data = { 'obs': { 'agent_state': torch.randn(T, bs, agent_num, obs_dim), 'global_state': torch.randn(T, bs, agent_num, global_obs_dim), 'action_mask': torch.randint(0, 2, size=(T, bs, agent_num, action_dim)) }, 'prev_state': [[None for _ in range(agent_num)] for _ in range(bs)], 'action': torch.randint(0, action_dim, size=(T, bs, agent_num)) } output = madqn_model(data, cooperation=True, single_step=False) assert output['total_q'].shape == (T, bs) assert len(output['next_state']) == bs and all([len(n) == agent_num for n in output['next_state']])