from easydict import EasyDict cartpole_discrete_dt_config = dict( exp_name='cartpole_dt_seed0', env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, stop_value=195, ), dataset=dict( data_dir_prefix='./cartpole_qrdqn_generation_data_seed0/expert_demos.hdf5', rtg_scale=None, context_len=20, env_type='classic', ), policy=dict( cuda=False, rtg_target=10, evaluator_env_num=5, clip_grad_norm_p=1.0, state_mean=1, state_std=0, model=dict( state_dim=4, act_dim=2, n_blocks=6, h_dim=128, context_len=20, n_heads=8, drop_p=0.1, continuous=False, ), max_timestep=1000, discount_factor=0.97, nstep=3, batch_size=64, learning_rate=0.001, target_update_freq=100, kappa=1.0, min_q_weight=4.0, collect=dict( data_type='hdf5', data_path='./cartpole_qrdqn_generation_data_seed0/expert_demos.hdf5', ), eval=dict(evaluator=dict(eval_freq=100, )), ), ) cartpole_discrete_dt_config = EasyDict(cartpole_discrete_dt_config) main_config = cartpole_discrete_dt_config cartpole_discrete_dt_create_config = dict( env=dict( type='cartpole', import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], ), env_manager=dict(type='base'), policy=dict(type='dt'), ) cartpole_discrete_dt_create_config = EasyDict(cartpole_discrete_dt_create_config) create_config = cartpole_discrete_dt_create_config # You can run this config with the entry file like `ding/example/dt.py`