from easydict import EasyDict bipedalwalker_td3_config = dict( exp_name='bipedalwalker_td3_seed0', env=dict( env_id='BipedalWalker-v3', collector_env_num=8, evaluator_env_num=5, # (bool) Scale output action into legal range. act_scale=True, n_evaluator_episode=5, rew_clip=True, ), policy=dict( cuda=True, random_collect_size=10000, model=dict( obs_shape=24, action_shape=4, twin_critic=True, action_space='regression', actor_head_hidden_size=400, critic_head_hidden_size=400, ), learn=dict( update_per_collect=64, batch_size=256, learning_rate_actor=0.0003, learning_rate_critic=0.0003, target_theta=0.005, discount_factor=0.99, actor_update_freq=2, noise=True, noise_sigma=0.2, noise_range=dict( min=-0.5, max=0.5, ), learner=dict(hook=dict(log_show_after_iter=1000, )) ), collect=dict(n_sample=64, ), other=dict(replay_buffer=dict(replay_buffer_size=300000, ), ), ), ) bipedalwalker_td3_config = EasyDict(bipedalwalker_td3_config) main_config = bipedalwalker_td3_config bipedalwalker_td3_create_config = dict( env=dict( type='bipedalwalker', import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='td3'), ) bipedalwalker_td3_create_config = EasyDict(bipedalwalker_td3_create_config) create_config = bipedalwalker_td3_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c bipedalwalker_td3_config.py -s 0` from ding.entry import serial_pipeline serial_pipeline([main_config, create_config], seed=0, max_env_step=int(1e5))