from easydict import EasyDict # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== env_name = 'game_2048' action_space_size = 4 collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 num_simulations = 100 update_per_collect = 200 batch_size = 512 max_env_step = int(5e6) reanalyze_ratio = 0. num_of_possible_chance_tile = 2 chance_space_size = 16 * num_of_possible_chance_tile # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== atari_muzero_config = dict( exp_name=f'data_mz_ctree/game_2048_npct-{num_of_possible_chance_tile}_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_bs{batch_size}_sslw2_seed0', env=dict( stop_value=int(1e6), env_name=env_name, obs_shape=(16, 4, 4), obs_type='dict_encoded_board', raw_reward_type='raw', # 'merged_tiles_plus_log_max_tile_num' reward_normalize=False, reward_norm_scale=100, max_tile=int(2 ** 16), # 2**11=2048, 2**16=65536 num_of_possible_chance_tile=num_of_possible_chance_tile, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=(16, 4, 4), action_space_size=action_space_size, image_channel=16, # NOTE: whether to use the self_supervised_learning_loss. default is False self_supervised_learning_loss=True, ), mcts_ctree=True, gumbel_algo=False, cuda=True, game_segment_length=200, update_per_collect=update_per_collect, batch_size=batch_size, td_steps=10, discount_factor=0.999, manual_temperature_decay=True, threshold_training_steps_for_final_temperature=int(1e5), optim_type='Adam', lr_piecewise_constant_decay=False, learning_rate=3e-3, # (float) Weight decay for training policy network. weight_decay=1e-4, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, ssl_loss_weight=2, # default is 0 n_episode=n_episode, eval_freq=int(2e3), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) atari_muzero_config = EasyDict(atari_muzero_config) main_config = atari_muzero_config atari_muzero_create_config = dict( env=dict( type='game_2048', import_names=['zoo.game_2048.envs.game_2048_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='muzero', import_names=['lzero.policy.muzero'], ), ) atari_muzero_create_config = EasyDict(atari_muzero_create_config) create_config = atari_muzero_create_config if __name__ == "__main__": from lzero.entry import train_muzero train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)