pointcept

[![Formatter](https://github.com/pointcept/pointcept/actions/workflows/formatter.yml/badge.svg)](https://github.com/pointcept/pointcept/actions/workflows/formatter.yml) **Pointcept** is a powerful and flexible codebase for point cloud perception research. It is also an official implementation of the following paper: - **Point Transformer V3: Simpler, Faster, Stronger** *Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao* IEEE Conference on Computer Vision and Pattern Recognition (**CVPR**) 2024 - Oral [ Backbone ] [PTv3] - [ [arXiv](https://arxiv.org/abs/2312.10035) ] [ [Bib](https://xywu.me/research/ptv3/bib.txt) ] [ [Project](https://github.com/Pointcept/PointTransformerV3) ] → [here](https://github.com/Pointcept/PointTransformerV3) - **OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation** *Bohao Peng, Xiaoyang Wu, Li Jiang, Yukang Chen, Hengshuang Zhao, Zhuotao Tian, Jiaya Jia* IEEE Conference on Computer Vision and Pattern Recognition (**CVPR**) 2024 [ Backbone ] [ OA-CNNs ] - [ [arXiv](https://arxiv.org/abs/2403.14418) ] [ [Bib](https://xywu.me/research/oacnns/bib.txt) ] → [here](#oa-cnns) - **PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm** *Haoyi Zhu\*, Honghui Yang\*, Xiaoyang Wu\*, Di Huang\*, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang* arXiv Preprint 2023 [ Pretrain ] [PonderV2] - [ [arXiv](https://arxiv.org/abs/2310.08586) ] [ [Bib](https://xywu.me/research/ponderv2/bib.txt) ] [ [Project](https://github.com/OpenGVLab/PonderV2) ] → [here](https://github.com/OpenGVLab/PonderV2) - **Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training** *Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao* IEEE Conference on Computer Vision and Pattern Recognition (**CVPR**) 2024 [ Pretrain ] [PPT] - [ [arXiv](https://arxiv.org/abs/2308.09718) ] [ [Bib](https://xywu.me/research/ppt/bib.txt) ] → [here](#point-prompt-training-ppt) - **Masked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning** *Xiaoyang Wu, Xin Wen, Xihui Liu, Hengshuang Zhao* IEEE Conference on Computer Vision and Pattern Recognition (**CVPR**) 2023 [ Pretrain ] [ MSC ] - [ [arXiv](https://arxiv.org/abs/2303.14191) ] [ [Bib](https://xywu.me/research/msc/bib.txt) ] → [here](#masked-scene-contrast-msc) - **Learning Context-aware Classifier for Semantic Segmentation** (3D Part) *Zhuotao Tian, Jiequan Cui, Li Jiang, Xiaojuan Qi, Xin Lai, Yixin Chen, Shu Liu, Jiaya Jia* AAAI Conference on Artificial Intelligence (**AAAI**) 2023 - Oral [ SemSeg ] [ CAC ] - [ [arXiv](https://arxiv.org/abs/2303.11633) ] [ [Bib](https://xywu.me/research/cac/bib.txt) ] [ [2D Part](https://github.com/tianzhuotao/CAC) ] → [here](#context-aware-classifier) - **Point Transformer V2: Grouped Vector Attention and Partition-based Pooling** *Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao* Conference on Neural Information Processing Systems (**NeurIPS**) 2022 [ Backbone ] [ PTv2 ] - [ [arXiv](https://arxiv.org/abs/2210.05666) ] [ [Bib](https://xywu.me/research/ptv2/bib.txt) ] → [here](#point-transformers) - **Point Transformer** *Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, Vladlen Koltun* IEEE International Conference on Computer Vision (**ICCV**) 2021 - Oral [ Backbone ] [ PTv1 ] - [ [arXiv](https://arxiv.org/abs/2012.09164) ] [ [Bib](https://hszhao.github.io/papers/iccv21_pointtransformer_bib.txt) ] → [here](#point-transformers) Additionally, **Pointcept** integrates the following excellent work (contain above): Backbone: [MinkUNet](https://github.com/NVIDIA/MinkowskiEngine) ([here](#sparseunet)), [SpUNet](https://github.com/traveller59/spconv) ([here](#sparseunet)), [SPVCNN](https://github.com/mit-han-lab/spvnas) ([here](#spvcnn)), [OACNNs](https://arxiv.org/abs/2403.14418) ([here](#oa-cnns)), [PTv1](https://arxiv.org/abs/2012.09164) ([here](#point-transformers)), [PTv2](https://arxiv.org/abs/2210.05666) ([here](#point-transformers)), [PTv3](https://arxiv.org/abs/2312.10035) ([here](#point-transformers)), [StratifiedFormer](https://github.com/dvlab-research/Stratified-Transformer) ([here](#stratified-transformer)), [OctFormer](https://github.com/octree-nn/octformer) ([here](#octformer)), [Swin3D](https://github.com/microsoft/Swin3D) ([here](#swin3d)); Semantic Segmentation: [Mix3d](https://github.com/kumuji/mix3d) ([here](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet/semseg-spunet-v1m1-0-base.py#L5)), [CAC](https://arxiv.org/abs/2303.11633) ([here](#context-aware-classifier)); Instance Segmentation: [PointGroup](https://github.com/dvlab-research/PointGroup) ([here](#pointgroup)); Pre-training: [PointContrast](https://github.com/facebookresearch/PointContrast) ([here](#pointcontrast)), [Contrastive Scene Contexts](https://github.com/facebookresearch/ContrastiveSceneContexts) ([here](#contrastive-scene-contexts)), [Masked Scene Contrast](https://arxiv.org/abs/2303.14191) ([here](#masked-scene-contrast-msc)), [Point Prompt Training](https://arxiv.org/abs/2308.09718) ([here](#point-prompt-training-ppt)); Datasets: [ScanNet](http://www.scan-net.org/) ([here](#scannet-v2)), [ScanNet200](http://www.scan-net.org/) ([here](#scannet-v2)), [ScanNet++](https://kaldir.vc.in.tum.de/scannetpp/) ([here](#scannet)), [S3DIS](https://docs.google.com/forms/d/e/1FAIpQLScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1) ([here](#s3dis)), [Matterport3D](https://niessner.github.io/Matterport/) ([here](#matterport3d)), [ArkitScene](https://github.com/apple/ARKitScenes), [Structured3D](https://structured3d-dataset.org/) ([here](#structured3d)), [SemanticKITTI](http://www.semantic-kitti.org/) ([here](#semantickitti)), [nuScenes](https://www.nuscenes.org/nuscenes) ([here](#nuscenes)), [ModelNet40](https://modelnet.cs.princeton.edu/) ([here](#modelnet)), [Waymo](https://waymo.com/open/) ([here](#waymo)). ## Highlights - *May, 2024*: In v1.5.2, we redesigned the default structure for each dataset for better performance. Please **re-preprocess** datasets or **download** our preprocessed datasets from **[here](https://huggingface.co/Pointcept)**. - *Apr, 2024*: **PTv3** is selected as one of the 90 **Oral** papers (3.3% accepted papers, 0.78% submissions) by CVPR'24! - *Mar, 2024*: We release code for **OA-CNNs**, accepted by CVPR'24. Issue related to **OA-CNNs** can @Pbihao. - *Feb, 2024*: **PTv3** and **PPT** are accepted by CVPR'24, another **two** papers by our Pointcept team have also been accepted by CVPR'24 ๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰. We will make them publicly available soon! - *Dec, 2023*: **PTv3** is released on arXiv, and the code is available in Pointcept. PTv3 is an efficient backbone model that achieves SOTA performances across indoor and outdoor scenarios. - *Aug, 2023*: **PPT** is released on arXiv. PPT presents a multi-dataset pre-training framework that achieves SOTA performance in both **indoor** and **outdoor** scenarios. It is compatible with various existing pre-training frameworks and backbones. A **pre-release** version of the code is accessible; for those interested, please feel free to contact me directly for access. - *Mar, 2023*: We released our codebase, **Pointcept**, a highly potent tool for point cloud representation learning and perception. We welcome new work to join the _Pointcept_ family and highly recommend reading [Quick Start](#quick-start) before starting your trail. - *Feb, 2023*: **MSC** and **CeCo** accepted by CVPR 2023. _MSC_ is a highly efficient and effective pretraining framework that facilitates cross-dataset large-scale pretraining, while _CeCo_ is a segmentation method specifically designed for long-tail datasets. Both approaches are compatible with all existing backbone models in our codebase, and we will soon make the code available for public use. - *Jan, 2023*: **CAC**, oral work of AAAI 2023, has expanded its 3D result with the incorporation of Pointcept. This addition will allow CAC to serve as a pluggable segmentor within our codebase. - *Sep, 2022*: **PTv2** accepted by NeurIPS 2022. It is a continuation of the Point Transformer. The proposed GVA theory can apply to most existing attention mechanisms, while Grid Pooling is also a practical addition to existing pooling methods. ## Citation If you find _Pointcept_ useful to your research, please cite our work as encouragement. (เฉญหŠ๊’ณโ€‹ห‹)เฉญโœง ``` @misc{pointcept2023, title={Pointcept: A Codebase for Point Cloud Perception Research}, author={Pointcept Contributors}, howpublished = {\url{https://github.com/Pointcept/Pointcept}}, year={2023} } ``` ## Overview - [Installation](#installation) - [Data Preparation](#data-preparation) - [Quick Start](#quick-start) - [Model Zoo](#model-zoo) - [Citation](#citation) - [Acknowledgement](#acknowledgement) ## Installation ### Requirements - Ubuntu: 18.04 and above. - CUDA: 11.3 and above. - PyTorch: 1.10.0 and above. ### Conda Environment ```bash conda create -n pointcept python=3.8 -y conda activate pointcept conda install ninja -y # Choose version you want here: https://pytorch.org/get-started/previous-versions/ conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y conda install h5py pyyaml -c anaconda -y conda install sharedarray tensorboard tensorboardx yapf addict einops scipy plyfile termcolor timm -c conda-forge -y conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y pip install torch-geometric # spconv (SparseUNet) # refer https://github.com/traveller59/spconv pip install spconv-cu113 # PPT (clip) pip install ftfy regex tqdm pip install git+https://github.com/openai/CLIP.git # PTv1 & PTv2 or precise eval cd libs/pointops # usual python setup.py install # docker & multi GPU arch TORCH_CUDA_ARCH_LIST="ARCH LIST" python setup.py install # e.g. 7.5: RTX 3000; 8.0: a100 More available in: https://developer.nvidia.com/cuda-gpus TORCH_CUDA_ARCH_LIST="7.5 8.0" python setup.py install cd ../.. # Open3D (visualization, optional) pip install open3d ``` ## Data Preparation ### ScanNet v2 The preprocessing supports semantic and instance segmentation for both `ScanNet20`, `ScanNet200`, and `ScanNet Data Efficient`. - Download the [ScanNet](http://www.scan-net.org/) v2 dataset. - Run preprocessing code for raw ScanNet as follows: ```bash # RAW_SCANNET_DIR: the directory of downloaded ScanNet v2 raw dataset. # PROCESSED_SCANNET_DIR: the directory of the processed ScanNet dataset (output dir). python pointcept/datasets/preprocessing/scannet/preprocess_scannet.py --dataset_root ${RAW_SCANNET_DIR} --output_root ${PROCESSED_SCANNET_DIR} ``` - (Optional) Download ScanNet Data Efficient files: ```bash # download-scannet.py is the official download script # or follow instructions here: https://kaldir.vc.in.tum.de/scannet_benchmark/data_efficient/documentation#download python download-scannet.py --data_efficient -o ${RAW_SCANNET_DIR} # unzip downloads cd ${RAW_SCANNET_DIR}/tasks unzip limited-annotation-points.zip unzip limited-reconstruction-scenes.zip # copy files to processed dataset folder mkdir ${PROCESSED_SCANNET_DIR}/tasks cp -r ${RAW_SCANNET_DIR}/tasks/points ${PROCESSED_SCANNET_DIR}/tasks cp -r ${RAW_SCANNET_DIR}/tasks/scenes ${PROCESSED_SCANNET_DIR}/tasks ``` - (Alternative) Our preprocess data can be directly downloaded [[here](https://huggingface.co/datasets/Pointcept/scannet-compressed)], please agree the official license before download it. - Link processed dataset to codebase: ```bash # PROCESSED_SCANNET_DIR: the directory of the processed ScanNet dataset. mkdir data ln -s ${PROCESSED_SCANNET_DIR} ${CODEBASE_DIR}/data/scannet ``` ### ScanNet++ - Download the [ScanNet++](https://kaldir.vc.in.tum.de/scannetpp/) dataset. - Run preprocessing code for raw ScanNet++ as follows: ```bash # RAW_SCANNETPP_DIR: the directory of downloaded ScanNet++ raw dataset. # PROCESSED_SCANNETPP_DIR: the directory of the processed ScanNet++ dataset (output dir). # NUM_WORKERS: the number of workers for parallel preprocessing. python pointcept/datasets/preprocessing/scannetpp/preprocess_scannetpp.py --dataset_root ${RAW_SCANNETPP_DIR} --output_root ${PROCESSED_SCANNETPP_DIR} --num_workers ${NUM_WORKERS} ``` - Sampling and chunking large point cloud data in train/val split as follows (only used for training): ```bash # PROCESSED_SCANNETPP_DIR: the directory of the processed ScanNet++ dataset (output dir). # NUM_WORKERS: the number of workers for parallel preprocessing. python pointcept/datasets/preprocessing/sampling_chunking_data.py --dataset_root ${PROCESSED_SCANNETPP_DIR} --grid_size 0.01 --chunk_range 6 6 --chunk_stride 3 3 --split train --num_workers ${NUM_WORKERS} python pointcept/datasets/preprocessing/sampling_chunking_data.py --dataset_root ${PROCESSED_SCANNETPP_DIR} --grid_size 0.01 --chunk_range 6 6 --chunk_stride 3 3 --split val --num_workers ${NUM_WORKERS} ``` - (Alternative) Our preprocess data can be directly downloaded [[here](https://huggingface.co/datasets/Pointcept/scannetpp-compressed)], please agree the official license before download it. - Link processed dataset to codebase: ```bash # PROCESSED_SCANNETPP_DIR: the directory of the processed ScanNet dataset. mkdir data ln -s ${PROCESSED_SCANNETPP_DIR} ${CODEBASE_DIR}/data/scannetpp ``` ### S3DIS - Download S3DIS data by filling this [Google form](https://docs.google.com/forms/d/e/1FAIpQLScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1). Download the `Stanford3dDataset_v1.2.zip` file and unzip it. - Fix error in `Area_5/office_19/Annotations/ceiling` Line 323474 (103.0๏ฟฝ0000 => 103.000000). - (Optional) Download Full 2D-3D S3DIS dataset (no XYZ) from [here](https://github.com/alexsax/2D-3D-Semantics) for parsing normal. - Run preprocessing code for S3DIS as follows: ```bash # S3DIS_DIR: the directory of downloaded Stanford3dDataset_v1.2 dataset. # RAW_S3DIS_DIR: the directory of Stanford2d3dDataset_noXYZ dataset. (optional, for parsing normal) # PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset (output dir). # S3DIS without aligned angle python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} # S3DIS with aligned angle python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --align_angle # S3DIS with normal vector (recommended, normal is helpful) python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --raw_root ${RAW_S3DIS_DIR} --parse_normal python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --raw_root ${RAW_S3DIS_DIR} --align_angle --parse_normal ``` - (Alternative) Our preprocess data can also be downloaded [[here](https://huggingface.co/datasets/Pointcept/s3dis-compressed )] (with normal vector and aligned angle), please agree with the official license before downloading it. - Link processed dataset to codebase. ```bash # PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset. mkdir data ln -s ${PROCESSED_S3DIS_DIR} ${CODEBASE_DIR}/data/s3dis ``` ### Structured3D - Download Structured3D panorama related and perspective (full) related zip files by filling this [Google form](https://docs.google.com/forms/d/e/1FAIpQLSc0qtvh4vHSoZaW6UvlXYy79MbcGdZfICjh4_t4bYofQIVIdw/viewform?pli=1) (no need to unzip them). - Organize all downloaded zip file in one folder (`${STRUCT3D_DIR}`). - Run preprocessing code for Structured3D as follows: ```bash # STRUCT3D_DIR: the directory of downloaded Structured3D dataset. # PROCESSED_STRUCT3D_DIR: the directory of processed Structured3D dataset (output dir). # NUM_WORKERS: Number for workers for preprocessing, default same as cpu count (might OOM). export PYTHONPATH=./ python pointcept/datasets/preprocessing/structured3d/preprocess_structured3d.py --dataset_root ${STRUCT3D_DIR} --output_root ${PROCESSED_STRUCT3D_DIR} --num_workers ${NUM_WORKERS} --grid_size 0.01 --fuse_prsp --fuse_pano ``` Following the instruction of [Swin3D](https://arxiv.org/abs/2304.06906), we keep 25 categories with frequencies of more than 0.001, out of the original 40 categories. [//]: # (- (Alternative) Our preprocess data can also be downloaded [[here]()], please agree the official license before download it.) - (Alternative) Our preprocess data can also be downloaded [[here](https://huggingface.co/datasets/Pointcept/structured3d-compressed )] (with perspective views and panorama view, 471.7G after unzipping), please agree the official license before download it. - Link processed dataset to codebase. ```bash # PROCESSED_STRUCT3D_DIR: the directory of processed Structured3D dataset (output dir). mkdir data ln -s ${PROCESSED_STRUCT3D_DIR} ${CODEBASE_DIR}/data/structured3d ``` ### Matterport3D - Follow [this page](https://niessner.github.io/Matterport/#download) to request access to the dataset. - Download the "region_segmentation" type, which represents the division of a scene into individual rooms. ```bash # download-mp.py is the official download script # MATTERPORT3D_DIR: the directory of downloaded Matterport3D dataset. python download-mp.py -o {MATTERPORT3D_DIR} --type region_segmentations ``` - Unzip the region_segmentations data ```bash # MATTERPORT3D_DIR: the directory of downloaded Matterport3D dataset. python pointcept/datasets/preprocessing/matterport3d/unzip_matterport3d_region_segmentation.py --dataset_root {MATTERPORT3D_DIR} ``` - Run preprocessing code for Matterport3D as follows: ```bash # MATTERPORT3D_DIR: the directory of downloaded Matterport3D dataset. # PROCESSED_MATTERPORT3D_DIR: the directory of processed Matterport3D dataset (output dir). # NUM_WORKERS: the number of workers for this preprocessing. python pointcept/datasets/preprocessing/matterport3d/preprocess_matterport3d_mesh.py --dataset_root ${MATTERPORT3D_DIR} --output_root ${PROCESSED_MATTERPORT3D_DIR} --num_workers ${NUM_WORKERS} ``` - Link processed dataset to codebase. ```bash # PROCESSED_MATTERPORT3D_DIR: the directory of processed Matterport3D dataset (output dir). mkdir data ln -s ${PROCESSED_MATTERPORT3D_DIR} ${CODEBASE_DIR}/data/matterport3d ``` Following the instruction of [OpenRooms](https://github.com/ViLab-UCSD/OpenRooms), we remapped Matterport3D's categories to ScanNet 20 semantic categories with the addition of a ceiling category. * (Alternative) Our preprocess data can also be downloaded [here](https://huggingface.co/datasets/Pointcept/matterport3d-compressed), please agree the official license before download it. ### SemanticKITTI - Download [SemanticKITTI](http://www.semantic-kitti.org/dataset.html#download) dataset. - Link dataset to codebase. ```bash # SEMANTIC_KITTI_DIR: the directory of SemanticKITTI dataset. # |- SEMANTIC_KITTI_DIR # |- dataset # |- sequences # |- 00 # |- 01 # |- ... mkdir -p data ln -s ${SEMANTIC_KITTI_DIR} ${CODEBASE_DIR}/data/semantic_kitti ``` ### nuScenes - Download the official [NuScene](https://www.nuscenes.org/nuscenes#download) dataset (with Lidar Segmentation) and organize the downloaded files as follows: ```bash NUSCENES_DIR โ”‚โ”€โ”€ samples โ”‚โ”€โ”€ sweeps โ”‚โ”€โ”€ lidarseg ... โ”‚โ”€โ”€ v1.0-trainval โ”‚โ”€โ”€ v1.0-test ``` - Run information preprocessing code (modified from OpenPCDet) for nuScenes as follows: ```bash # NUSCENES_DIR: the directory of downloaded nuScenes dataset. # PROCESSED_NUSCENES_DIR: the directory of processed nuScenes dataset (output dir). # MAX_SWEEPS: Max number of sweeps. Default: 10. pip install nuscenes-devkit pyquaternion python pointcept/datasets/preprocessing/nuscenes/preprocess_nuscenes_info.py --dataset_root ${NUSCENES_DIR} --output_root ${PROCESSED_NUSCENES_DIR} --max_sweeps ${MAX_SWEEPS} --with_camera ``` - (Alternative) Our preprocess nuScenes information data can also be downloaded [[here]( https://huggingface.co/datasets/Pointcept/nuscenes-compressed)] (only processed information, still need to download raw dataset and link to the folder), please agree the official license before download it. - Link raw dataset to processed NuScene dataset folder: ```bash # NUSCENES_DIR: the directory of downloaded nuScenes dataset. # PROCESSED_NUSCENES_DIR: the directory of processed nuScenes dataset (output dir). ln -s ${NUSCENES_DIR} {PROCESSED_NUSCENES_DIR}/raw ``` then the processed nuscenes folder is organized as follows: ```bash nuscene |โ”€โ”€ raw โ”‚โ”€โ”€ samples โ”‚โ”€โ”€ sweeps โ”‚โ”€โ”€ lidarseg ... โ”‚โ”€โ”€ v1.0-trainval โ”‚โ”€โ”€ v1.0-test |โ”€โ”€ info ``` - Link processed dataset to codebase. ```bash # PROCESSED_NUSCENES_DIR: the directory of processed nuScenes dataset (output dir). mkdir data ln -s ${PROCESSED_NUSCENES_DIR} ${CODEBASE_DIR}/data/nuscenes ``` ### Waymo - Download the official [Waymo](https://waymo.com/open/download/) dataset (v1.4.3) and organize the downloaded files as follows: ```bash WAYMO_RAW_DIR โ”‚โ”€โ”€ training โ”‚โ”€โ”€ validation โ”‚โ”€โ”€ testing ``` - Install the following dependence: ```bash # If shows "No matching distribution found", download whl directly from Pypi and install the package. conda create -n waymo python=3.10 -y conda activate waymo pip install waymo-open-dataset-tf-2-12-0 ``` - Run the preprocessing code as follows: ```bash # WAYMO_DIR: the directory of the downloaded Waymo dataset. # PROCESSED_WAYMO_DIR: the directory of the processed Waymo dataset (output dir). # NUM_WORKERS: num workers for preprocessing python pointcept/datasets/preprocessing/waymo/preprocess_waymo.py --dataset_root ${WAYMO_DIR} --output_root ${PROCESSED_WAYMO_DIR} --splits training validation --num_workers ${NUM_WORKERS} ``` - Link processed dataset to the codebase. ```bash # PROCESSED_WAYMO_DIR: the directory of the processed Waymo dataset (output dir). mkdir data ln -s ${PROCESSED_WAYMO_DIR} ${CODEBASE_DIR}/data/waymo ``` ### ModelNet - Download [modelnet40_normal_resampled.zip](https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip) and unzip - Link dataset to the codebase. ```bash mkdir -p data ln -s ${MODELNET_DIR} ${CODEBASE_DIR}/data/modelnet40_normal_resampled ``` ## Quick Start ### Training **Train from scratch.** The training processing is based on configs in `configs` folder. The training script will generate an experiment folder in `exp` folder and backup essential code in the experiment folder. Training config, log, tensorboard, and checkpoints will also be saved into the experiment folder during the training process. ```bash export CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES} # Script (Recommended) sh scripts/train.sh -p ${INTERPRETER_PATH} -g ${NUM_GPU} -d ${DATASET_NAME} -c ${CONFIG_NAME} -n ${EXP_NAME} # Direct export PYTHONPATH=./ python tools/train.py --config-file ${CONFIG_PATH} --num-gpus ${NUM_GPU} --options save_path=${SAVE_PATH} ``` For example: ```bash # By script (Recommended) # -p is default set as python and can be ignored sh scripts/train.sh -p python -d scannet -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base # Direct export PYTHONPATH=./ python tools/train.py --config-file configs/scannet/semseg-pt-v2m2-0-base.py --options save_path=exp/scannet/semseg-pt-v2m2-0-base ``` **Resume training from checkpoint.** If the training process is interrupted by accident, the following script can resume training from a given checkpoint. ```bash export CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES} # Script (Recommended) # simply add "-r true" sh scripts/train.sh -p ${INTERPRETER_PATH} -g ${NUM_GPU} -d ${DATASET_NAME} -c ${CONFIG_NAME} -n ${EXP_NAME} -r true # Direct export PYTHONPATH=./ python tools/train.py --config-file ${CONFIG_PATH} --num-gpus ${NUM_GPU} --options save_path=${SAVE_PATH} resume=True weight=${CHECKPOINT_PATH} ``` ### Testing During training, model evaluation is performed on point clouds after grid sampling (voxelization), providing an initial assessment of model performance. However, to obtain precise evaluation results, testing is **essential**. The testing process involves subsampling a dense point cloud into a sequence of voxelized point clouds, ensuring comprehensive coverage of all points. These sub-results are then predicted and collected to form a complete prediction of the entire point cloud. This approach yields higher evaluation results compared to simply mapping/interpolating the prediction. In addition, our testing code supports TTA (test time augmentation) testing, which further enhances the stability of evaluation performance. ```bash # By script (Based on experiment folder created by training script) sh scripts/test.sh -p ${INTERPRETER_PATH} -g ${NUM_GPU} -d ${DATASET_NAME} -n ${EXP_NAME} -w ${CHECKPOINT_NAME} # Direct export PYTHONPATH=./ python tools/test.py --config-file ${CONFIG_PATH} --num-gpus ${NUM_GPU} --options save_path=${SAVE_PATH} weight=${CHECKPOINT_PATH} ``` For example: ```bash # By script (Based on experiment folder created by training script) # -p is default set as python and can be ignored # -w is default set as model_best and can be ignored sh scripts/test.sh -p python -d scannet -n semseg-pt-v2m2-0-base -w model_best # Direct export PYTHONPATH=./ python tools/test.py --config-file configs/scannet/semseg-pt-v2m2-0-base.py --options save_path=exp/scannet/semseg-pt-v2m2-0-base weight=exp/scannet/semseg-pt-v2m2-0-base/model/model_best.pth ``` The TTA can be disabled by replace `data.test.test_cfg.aug_transform = [...]` with: ```python data = dict( train = dict(...), val = dict(...), test = dict( ..., test_cfg = dict( ..., aug_transform = [ [dict(type="RandomRotateTargetAngle", angle=[0], axis="z", center=[0, 0, 0], p=1)] ] ) ) ) ``` ### Offset `Offset` is the separator of point clouds in batch data, and it is similar to the concept of `Batch` in PyG. A visual illustration of batch and offset is as follows:

pointcept

## Model Zoo ### 1. Backbones and Semantic Segmentation #### SparseUNet _Pointcept_ provides `SparseUNet` implemented by `SpConv` and `MinkowskiEngine`. The SpConv version is recommended since SpConv is easy to install and faster than MinkowskiEngine. Meanwhile, SpConv is also widely applied in outdoor perception. - **SpConv (recommend)** The SpConv version `SparseUNet` in the codebase was fully rewrite from `MinkowskiEngine` version, example running script is as follows: ```bash # ScanNet val sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base # S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base # S3DIS (with normal) sh scripts/train.sh -g 4 -d s3dis -c semseg-spunet-v1m1-0-cn-base -n semseg-spunet-v1m1-0-cn-base # SemanticKITTI sh scripts/train.sh -g 4 -d semantic_kitti -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base # nuScenes sh scripts/train.sh -g 4 -d nuscenes -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base # ModelNet40 sh scripts/train.sh -g 2 -d modelnet40 -c cls-spunet-v1m1-0-base -n cls-spunet-v1m1-0-base # ScanNet Data Efficient sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la20 -n semseg-spunet-v1m1-2-efficient-la20 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la50 -n semseg-spunet-v1m1-2-efficient-la50 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la100 -n semseg-spunet-v1m1-2-efficient-la100 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la200 -n semseg-spunet-v1m1-2-efficient-la200 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr1 -n semseg-spunet-v1m1-2-efficient-lr1 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr5 -n semseg-spunet-v1m1-2-efficient-lr5 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr10 -n semseg-spunet-v1m1-2-efficient-lr10 sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr20 -n semseg-spunet-v1m1-2-efficient-lr20 # Profile model run time sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-0-enable-profiler -n semseg-spunet-v1m1-0-enable-profiler ``` - **MinkowskiEngine** The MinkowskiEngine version `SparseUNet` in the codebase was modified from the original MinkowskiEngine repo, and example running scripts are as follows: 1. Install MinkowskiEngine, refer https://github.com/NVIDIA/MinkowskiEngine 2. Training with the following example scripts: ```bash # Uncomment "# from .sparse_unet import *" in "pointcept/models/__init__.py" # Uncomment "# from .mink_unet import *" in "pointcept/models/sparse_unet/__init__.py" # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base # S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base # SemanticKITTI sh scripts/train.sh -g 2 -d semantic_kitti -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base ``` #### OA-CNNs Introducing Omni-Adaptive 3D CNNs (**OA-CNNs**), a family of networks that integrates a lightweight module to greatly enhance the adaptivity of sparse CNNs at minimal computational cost. Without any self-attention modules, **OA-CNNs** favorably surpass point transformers in terms of accuracy in both indoor and outdoor scenes, with much less latency and memory cost. Issue related to **OA-CNNs** can @Pbihao. ```bash # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-oacnns-v1m1-0-base -n semseg-oacnns-v1m1-0-base ``` #### Point Transformers - **PTv3** [PTv3](https://arxiv.org/abs/2312.10035) is an efficient backbone model that achieves SOTA performances across indoor and outdoor scenarios. The full PTv3 relies on FlashAttention, while FlashAttention relies on CUDA 11.6 and above, make sure your local Pointcept environment satisfies the requirements. If you can not upgrade your local environment to satisfy the requirements (CUDA >= 11.6), then you can disable FlashAttention by setting the model parameter `enable_flash` to `false` and reducing the `enc_patch_size` and `dec_patch_size` to a level (e.g. 128). FlashAttention force disables RPE and forces the accuracy reduced to fp16. If you require these features, please disable `enable_flash` and adjust `enable_rpe`, `upcast_attention` and`upcast_softmax`. Detailed instructions and experiment records (containing weights) are available on the [project repository](https://github.com/Pointcept/PointTransformerV3). Example running scripts are as follows: ```bash # Scratched ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v3m1-0-base -n semseg-pt-v3m1-0-base # PPT joint training (ScanNet + Structured3D) and evaluate in ScanNet sh scripts/train.sh -g 8 -d scannet -c semseg-pt-v3m1-1-ppt-extreme -n semseg-pt-v3m1-1-ppt-extreme # Scratched ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v3m1-0-base -n semseg-pt-v3m1-0-base # Fine-tuning from PPT joint training (ScanNet + Structured3D) with ScanNet200 # PTV3_PPT_WEIGHT_PATH: Path to model weight trained by PPT multi-dataset joint training # e.g. exp/scannet/semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v3m1-1-ppt-ft -n semseg-pt-v3m1-1-ppt-ft -w ${PTV3_PPT_WEIGHT_PATH} # Scratched ScanNet++ sh scripts/train.sh -g 4 -d scannetpp -c semseg-pt-v3m1-0-base -n semseg-pt-v3m1-0-base # Scratched ScanNet++ test sh scripts/train.sh -g 4 -d scannetpp -c semseg-pt-v3m1-1-submit -n semseg-pt-v3m1-1-submit # Scratched S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v3m1-0-base -n semseg-pt-v3m1-0-base # an example for disbale flash_attention and enable rpe. sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v3m1-1-rpe -n semseg-pt-v3m1-0-rpe # PPT joint training (ScanNet + S3DIS + Structured3D) and evaluate in ScanNet sh scripts/train.sh -g 8 -d s3dis -c semseg-pt-v3m1-1-ppt-extreme -n semseg-pt-v3m1-1-ppt-extreme # S3DIS 6-fold cross validation # 1. The default configs are evaluated on Area_5, modify the "data.train.split", "data.val.split", and "data.test.split" to make the config evaluated on Area_1 ~ Area_6 respectively. # 2. Train and evaluate the model on each split of areas and gather result files located in "exp/s3dis/EXP_NAME/result/Area_x.pth" in one single folder, noted as RECORD_FOLDER. # 3. Run the following script to get S3DIS 6-fold cross validation performance: export PYTHONPATH=./ python tools/test_s3dis_6fold.py --record_root ${RECORD_FOLDER} # Scratched nuScenes sh scripts/train.sh -g 4 -d nuscenes -c semseg-pt-v3m1-0-base -n semseg-pt-v3m1-0-base # Scratched Waymo sh scripts/train.sh -g 4 -d waymo -c semseg-pt-v3m1-0-base -n semseg-pt-v3m1-0-base # More configs and exp records for PTv3 will be available soon. ``` Indoor semantic segmentation | Model | Benchmark | Additional Data | Num GPUs | Val mIoU | Config | Tensorboard | Exp Record | | :---: | :---: |:---------------:| :---: | :---: | :---: | :---: | :---: | | PTv3 | ScanNet | ✗ | 4 | 77.6% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet-semseg-pt-v3m1-0-base) | | PTv3 + PPT | ScanNet | ✓ | 8 | 78.5% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet/semseg-pt-v3m1-1-ppt-extreme.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet-semseg-pt-v3m1-1-ppt-extreme) | | PTv3 | ScanNet200 | ✗ | 4 | 35.3% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet200/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) |[link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet200-semseg-pt-v3m1-0-base)| | PTv3 + PPT | ScanNet200 | ✓ (f.t.) | 4 | | | | | | PTv3 | S3DIS (Area5) | ✗ | 4 | 73.6% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/s3dis/semseg-pt-v3m1-0-rpe.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/s3dis-semseg-pt-v3m1-0-rpe) | | PTv3 + PPT | S3DIS (Area5) | ✓ | 8 | 75.4% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/s3dis/semseg-pt-v3m1-1-ppt-extreme.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/s3dis-semseg-pt-v3m1-1-ppt-extreme) | Outdoor semantic segmentation | Model | Benchmark | Additional Data | Num GPUs | Val mIoU | Config | Tensorboard | Exp Record | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | PTv3 | nuScenes | ✗ | 4 | 80.3 | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/nuscenes/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard)|[link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/nuscenes-semseg-pt-v3m1-0-base) | | PTv3 + PPT | nuScenes | ✓ | 8 | | | | | | PTv3 | SemanticKITTI | ✗ | 4 | | | | | | PTv3 + PPT | SemanticKITTI | ✓ | 8 | | | | | | PTv3 | Waymo | ✗ | 4 | 71.2 | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/waymo/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/waymo-semseg-pt-v3m1-0-base) (log only) | | PTv3 + PPT | Waymo | ✓ | 8 | | | | | _**\*Released model weights are trained for v1.5.1, weights for v1.5.2 and later is still ongoing.**_ - **PTv2 mode2** The original PTv2 was trained on 4 * RTX a6000 (48G memory). Even enabling AMP, the memory cost of the original PTv2 is slightly larger than 24G. Considering GPUs with 24G memory are much more accessible, I tuned the PTv2 on the latest Pointcept and made it runnable on 4 * RTX 3090 machines. `PTv2 Mode2` enables AMP and disables _Position Encoding Multiplier_ & _Grouped Linear_. During our further research, we found that precise coordinates are not necessary for point cloud understanding (Replacing precise coordinates with grid coordinates doesn't influence the performance. Also, SparseUNet is an example). As for Grouped Linear, my implementation of Grouped Linear seems to cost more memory than the Linear layer provided by PyTorch. Benefiting from the codebase and better parameter tuning, we also relieve the overfitting problem. The reproducing performance is even better than the results reported in our paper. Example running scripts are as follows: ```bash # ptv2m2: PTv2 mode2, disable PEM & Grouped Linear, GPU memory cost < 24G (recommend) # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m2-3-lovasz -n semseg-pt-v2m2-3-lovasz # ScanNet test sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m2-1-submit -n semseg-pt-v2m2-1-submit # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base # ScanNet++ sh scripts/train.sh -g 4 -d scannetpp -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base # ScanNet++ test sh scripts/train.sh -g 4 -d scannetpp -c semseg-pt-v2m2-1-submit -n semseg-pt-v2m2-1-submit # S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base # SemanticKITTI sh scripts/train.sh -g 4 -d semantic_kitti -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base # nuScenes sh scripts/train.sh -g 4 -d nuscenes -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base ``` - **PTv2 mode1** `PTv2 mode1` is the original PTv2 we reported in our paper, example running scripts are as follows: ```bash # ptv2m1: PTv2 mode1, Original PTv2, GPU memory cost > 24G # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m1-0-base -n semseg-pt-v2m1-0-base # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v2m1-0-base -n semseg-pt-v2m1-0-base # S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v2m1-0-base -n semseg-pt-v2m1-0-base ``` - **PTv1** The original PTv1 is also available in our Pointcept codebase. I haven't run PTv1 for a long time, but I have ensured that the example running script works well. ```bash # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v1-0-base -n semseg-pt-v1-0-base # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v1-0-base -n semseg-pt-v1-0-base # S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v1-0-base -n semseg-pt-v1-0-base ``` #### Stratified Transformer 1. Additional requirements: ```bash pip install torch-points3d # Fix dependence, caused by installing torch-points3d pip uninstall SharedArray pip install SharedArray==3.2.1 cd libs/pointops2 python setup.py install cd ../.. ``` 2. Uncomment `# from .stratified_transformer import *` in `pointcept/models/__init__.py`. 3. Refer [Optional Installation](installation) to install dependence. 4. Training with the following example scripts: ```bash # stv1m1: Stratified Transformer mode1, Modified from the original Stratified Transformer code. # PTv2m2: Stratified Transformer mode2, My rewrite version (recommend). # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-st-v1m2-0-refined -n semseg-st-v1m2-0-refined sh scripts/train.sh -g 4 -d scannet -c semseg-st-v1m1-0-origin -n semseg-st-v1m1-0-origin # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-st-v1m2-0-refined -n semseg-st-v1m2-0-refined # S3DIS sh scripts/train.sh -g 4 -d s3dis -c semseg-st-v1m2-0-refined -n semseg-st-v1m2-0-refined ``` #### SPVCNN `SPVCNN` is a baseline model of [SPVNAS](https://github.com/mit-han-lab/spvnas), it is also a practical baseline for outdoor datasets. 1. Install torchsparse: ```bash # refer https://github.com/mit-han-lab/torchsparse # install method without sudo apt install conda install google-sparsehash -c bioconda export C_INCLUDE_PATH=${CONDA_PREFIX}/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=${CONDA_PREFIX}/include:CPLUS_INCLUDE_PATH pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git ``` 2. Training with the following example scripts: ```bash # SemanticKITTI sh scripts/train.sh -g 2 -d semantic_kitti -c semseg-spvcnn-v1m1-0-base -n semseg-spvcnn-v1m1-0-base ``` #### OctFormer OctFormer from _OctFormer: Octree-based Transformers for 3D Point Clouds_. 1. Additional requirements: ```bash cd libs git clone https://github.com/octree-nn/dwconv.git pip install ./dwconv pip install ocnn ``` 2. Uncomment `# from .octformer import *` in `pointcept/models/__init__.py`. 2. Training with the following example scripts: ```bash # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-octformer-v1m1-0-base -n semseg-octformer-v1m1-0-base ``` #### Swin3D Swin3D from _Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene Understanding_. 1. Additional requirements: ```bash # 1. Install MinkEngine v0.5.4, follow readme in https://github.com/NVIDIA/MinkowskiEngine; # 2. Install Swin3D, mainly for cuda operation: cd libs git clone https://github.com/microsoft/Swin3D.git cd Swin3D pip install ./ ``` 2. Uncomment `# from .swin3d import *` in `pointcept/models/__init__.py`. 3. Pre-Training with the following example scripts (Structured3D preprocessing refer [here](#structured3d)): ```bash # Structured3D + Swin-S sh scripts/train.sh -g 4 -d structured3d -c semseg-swin3d-v1m1-0-small -n semseg-swin3d-v1m1-0-small # Structured3D + Swin-L sh scripts/train.sh -g 4 -d structured3d -c semseg-swin3d-v1m1-1-large -n semseg-swin3d-v1m1-1-large # Addition # Structured3D + SpUNet sh scripts/train.sh -g 4 -d structured3d -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base # Structured3D + PTv2 sh scripts/train.sh -g 4 -d structured3d -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base ``` 4. Fine-tuning with the following example scripts: ```bash # ScanNet + Swin-S sh scripts/train.sh -g 4 -d scannet -w exp/structured3d/semseg-swin3d-v1m1-1-large/model/model_last.pth -c semseg-swin3d-v1m1-0-small -n semseg-swin3d-v1m1-0-small # ScanNet + Swin-L sh scripts/train.sh -g 4 -d scannet -w exp/structured3d/semseg-swin3d-v1m1-1-large/model/model_last.pth -c semseg-swin3d-v1m1-1-large -n semseg-swin3d-v1m1-1-large # S3DIS + Swin-S (here we provide config support S3DIS normal vector) sh scripts/train.sh -g 4 -d s3dis -w exp/structured3d/semseg-swin3d-v1m1-1-large/model/model_last.pth -c semseg-swin3d-v1m1-0-small -n semseg-swin3d-v1m1-0-small # S3DIS + Swin-L (here we provide config support S3DIS normal vector) sh scripts/train.sh -g 4 -d s3dis -w exp/structured3d/semseg-swin3d-v1m1-1-large/model/model_last.pth -c semseg-swin3d-v1m1-1-large -n semseg-swin3d-v1m1-1-large ``` #### Context-Aware Classifier `Context-Aware Classifier` is a segmentor that can further boost the performance of each backbone, as a replacement for `Default Segmentor`. Training with the following example scripts: ```bash # ScanNet sh scripts/train.sh -g 4 -d scannet -c semseg-cac-v1m1-0-spunet-base -n semseg-cac-v1m1-0-spunet-base sh scripts/train.sh -g 4 -d scannet -c semseg-cac-v1m1-1-spunet-lovasz -n semseg-cac-v1m1-1-spunet-lovasz sh scripts/train.sh -g 4 -d scannet -c semseg-cac-v1m1-2-ptv2-lovasz -n semseg-cac-v1m1-2-ptv2-lovasz # ScanNet200 sh scripts/train.sh -g 4 -d scannet200 -c semseg-cac-v1m1-0-spunet-base -n semseg-cac-v1m1-0-spunet-base sh scripts/train.sh -g 4 -d scannet200 -c semseg-cac-v1m1-1-spunet-lovasz -n semseg-cac-v1m1-1-spunet-lovasz sh scripts/train.sh -g 4 -d scannet200 -c semseg-cac-v1m1-2-ptv2-lovasz -n semseg-cac-v1m1-2-ptv2-lovasz ``` ### 2. Instance Segmentation #### PointGroup [PointGroup](https://github.com/dvlab-research/PointGroup) is a baseline framework for point cloud instance segmentation. 1. Additional requirements: ```bash conda install -c bioconda google-sparsehash cd libs/pointgroup_ops python setup.py install --include_dirs=${CONDA_PREFIX}/include cd ../.. ``` 2. Uncomment `# from .point_group import *` in `pointcept/models/__init__.py`. 3. Training with the following example scripts: ```bash # ScanNet sh scripts/train.sh -g 4 -d scannet -c insseg-pointgroup-v1m1-0-spunet-base -n insseg-pointgroup-v1m1-0-spunet-base # S3DIS sh scripts/train.sh -g 4 -d scannet -c insseg-pointgroup-v1m1-0-spunet-base -n insseg-pointgroup-v1m1-0-spunet-base ``` ### 3. Pre-training #### Masked Scene Contrast (MSC) 1. Pre-training with the following example scripts: ```bash # ScanNet sh scripts/train.sh -g 8 -d scannet -c pretrain-msc-v1m1-0-spunet-base -n pretrain-msc-v1m1-0-spunet-base ``` 2. Fine-tuning with the following example scripts: enable PointGroup ([here](#pointgroup)) before fine-tuning on instance segmentation task. ```bash # ScanNet20 Semantic Segmentation sh scripts/train.sh -g 8 -d scannet -w exp/scannet/pretrain-msc-v1m1-0-spunet-base/model/model_last.pth -c semseg-spunet-v1m1-4-ft -n semseg-msc-v1m1-0f-spunet-base # ScanNet20 Instance Segmentation (enable PointGroup before running the script) sh scripts/train.sh -g 4 -d scannet -w exp/scannet/pretrain-msc-v1m1-0-spunet-base/model/model_last.pth -c insseg-pointgroup-v1m1-0-spunet-base -n insseg-msc-v1m1-0f-pointgroup-spunet-base ``` 3. Example log and weight: [[Pretrain](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wuxy_connect_hku_hk/EYvNV4XUJ_5Mlk-g15RelN4BW_P8lVBfC_zhjC_BlBDARg?e=UoGFWH)] [[Semseg](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wuxy_connect_hku_hk/EQkDiv5xkOFKgCpGiGtAlLwBon7i8W6my3TIbGVxuiTttQ?e=tQFnbr)] #### Point Prompt Training (PPT) PPT presents a multi-dataset pre-training framework, and it is compatible with various existing pre-training frameworks and backbones. 1. PPT supervised joint training with the following example scripts: ```bash # ScanNet + Structured3d, validate on ScanNet (S3DIS might cause long data time, w/o S3DIS for a quick validation) >= 3090 * 8 sh scripts/train.sh -g 8 -d scannet -c semseg-ppt-v1m1-0-sc-st-spunet -n semseg-ppt-v1m1-0-sc-st-spunet sh scripts/train.sh -g 8 -d scannet -c semseg-ppt-v1m1-1-sc-st-spunet-submit -n semseg-ppt-v1m1-1-sc-st-spunet-submit # ScanNet + S3DIS + Structured3d, validate on S3DIS (>= a100 * 8) sh scripts/train.sh -g 8 -d s3dis -c semseg-ppt-v1m1-0-s3-sc-st-spunet -n semseg-ppt-v1m1-0-s3-sc-st-spunet # SemanticKITTI + nuScenes + Waymo, validate on SemanticKITTI (bs12 >= 3090 * 4 >= 3090 * 8, v1m1-0 is still on tuning) sh scripts/train.sh -g 4 -d semantic_kitti -c semseg-ppt-v1m1-0-nu-sk-wa-spunet -n semseg-ppt-v1m1-0-nu-sk-wa-spunet sh scripts/train.sh -g 4 -d semantic_kitti -c semseg-ppt-v1m2-0-sk-nu-wa-spunet -n semseg-ppt-v1m2-0-sk-nu-wa-spunet sh scripts/train.sh -g 4 -d semantic_kitti -c semseg-ppt-v1m2-1-sk-nu-wa-spunet-submit -n semseg-ppt-v1m2-1-sk-nu-wa-spunet-submit # SemanticKITTI + nuScenes + Waymo, validate on nuScenes (bs12 >= 3090 * 4; bs24 >= 3090 * 8, v1m1-0 is still on tuning)) sh scripts/train.sh -g 4 -d nuscenes -c semseg-ppt-v1m1-0-nu-sk-wa-spunet -n semseg-ppt-v1m1-0-nu-sk-wa-spunet sh scripts/train.sh -g 4 -d nuscenes -c semseg-ppt-v1m2-0-nu-sk-wa-spunet -n semseg-ppt-v1m2-0-nu-sk-wa-spunet sh scripts/train.sh -g 4 -d nuscenes -c semseg-ppt-v1m2-1-nu-sk-wa-spunet-submit -n semseg-ppt-v1m2-1-nu-sk-wa-spunet-submit ``` #### PointContrast 1. Preprocess and link ScanNet-Pair dataset (pair-wise matching with ScanNet raw RGB-D frame, ~1.5T): ```bash # RAW_SCANNET_DIR: the directory of downloaded ScanNet v2 raw dataset. # PROCESSED_SCANNET_PAIR_DIR: the directory of processed ScanNet pair dataset (output dir). python pointcept/datasets/preprocessing/scannet/scannet_pair/preprocess.py --dataset_root ${RAW_SCANNET_DIR} --output_root ${PROCESSED_SCANNET_PAIR_DIR} ln -s ${PROCESSED_SCANNET_PAIR_DIR} ${CODEBASE_DIR}/data/scannet ``` 2. Pre-training with the following example scripts: ```bash # ScanNet sh scripts/train.sh -g 8 -d scannet -c pretrain-msc-v1m1-1-spunet-pointcontrast -n pretrain-msc-v1m1-1-spunet-pointcontrast ``` 3. Fine-tuning refer [MSC](#masked-scene-contrast-msc). #### Contrastive Scene Contexts 1. Preprocess and link ScanNet-Pair dataset (refer [PointContrast](#pointcontrast)): 2. Pre-training with the following example scripts: ```bash # ScanNet sh scripts/train.sh -g 8 -d scannet -c pretrain-msc-v1m2-0-spunet-csc -n pretrain-msc-v1m2-0-spunet-csc ``` 3. Fine-tuning refer [MSC](#masked-scene-contrast-msc). ## Acknowledgement _Pointcept_ is designed by [Xiaoyang](https://xywu.me/), named by [Yixing](https://github.com/yxlao) and the logo is created by [Yuechen](https://julianjuaner.github.io/). It is derived from [Hengshuang](https://hszhao.github.io/)'s [Semseg](https://github.com/hszhao/semseg) and inspirited by several repos, e.g., [MinkowskiEngine](https://github.com/NVIDIA/MinkowskiEngine), [pointnet2](https://github.com/charlesq34/pointnet2), [mmcv](https://github.com/open-mmlab/mmcv/tree/master/mmcv), and [Detectron2](https://github.com/facebookresearch/detectron2).