_base_ = ["../_base_/default_runtime.py"] # misc custom setting batch_size = 16 # bs: total bs in all gpus # batch_size_val = 8 empty_cache = False enable_amp = False # model settings model = dict( type="DefaultClassifier", num_classes=40, backbone_embed_dim=256, backbone=dict( type="SpUNet-v1m1", in_channels=6, num_classes=0, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2), cls_mode=True, ), criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)], ) # scheduler settings epoch = 200 optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True) scheduler = dict(type="MultiStepLR", milestones=[0.6, 0.8], gamma=0.1) # dataset settings dataset_type = "ModelNetDataset" data_root = "data/modelnet40_normal_resampled" cache_data = False class_names = [ "airplane", "bathtub", "bed", "bench", "bookshelf", "bottle", "bowl", "car", "chair", "cone", "cup", "curtain", "desk", "door", "dresser", "flower_pot", "glass_box", "guitar", "keyboard", "lamp", "laptop", "mantel", "monitor", "night_stand", "person", "piano", "plant", "radio", "range_hood", "sink", "sofa", "stairs", "stool", "table", "tent", "toilet", "tv_stand", "vase", "wardrobe", "xbox", ] data = dict( num_classes=40, ignore_index=-1, names=class_names, train=dict( type=dataset_type, split="train", data_root=data_root, class_names=class_names, transform=[ dict(type="NormalizeCoord"), # dict(type="CenterShift", apply_z=True), # dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), # dict(type="RandomRotate", angle=[-1/24, 1/24], axis="x", p=0.5), # dict(type="RandomRotate", angle=[-1/24, 1/24], axis="y", p=0.5), dict(type="RandomScale", scale=[0.9, 1.1]), dict(type="RandomShift", shift=((-0.2, 0.2), (-0.2, 0.2), (-0.2, 0.2))), # dict(type="RandomFlip", p=0.5), # dict(type="RandomJitter", sigma=0.005, clip=0.02), # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), dict( type="GridSample", grid_size=0.01, hash_type="fnv", mode="train", keys=("coord", "normal"), return_grid_coord=True, ), # dict(type="SphereCrop", point_max=10000, mode="random"), # dict(type="CenterShift", apply_z=True), dict(type="ShufflePoint"), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "category"), feat_keys=["coord", "normal"], ), ], test_mode=False, ), val=dict( type=dataset_type, split="test", data_root=data_root, class_names=class_names, transform=[ dict(type="NormalizeCoord"), dict( type="GridSample", grid_size=0.01, hash_type="fnv", mode="train", keys=("coord", "normal"), return_grid_coord=True, ), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "category"), feat_keys=["coord", "normal"], ), ], test_mode=False, ), test=dict( type=dataset_type, split="test", data_root=data_root, class_names=class_names, transform=[ dict(type="NormalizeCoord"), dict( type="GridSample", grid_size=0.01, hash_type="fnv", mode="train", keys=("coord", "normal"), return_grid_coord=True, ), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "category"), feat_keys=["coord", "normal"], ), ], test_mode=True, ), ) # hooks hooks = [ dict(type="CheckpointLoader"), dict(type="IterationTimer", warmup_iter=2), dict(type="InformationWriter"), dict(type="ClsEvaluator"), dict(type="CheckpointSaver", save_freq=None), ] # tester test = dict(type="ClsTester")