File size: 5,662 Bytes
4893ce0
 
 
 
 
 
 
7591db0
 
 
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import torch.nn.functional as F
from model.model import PointSemSeg, Find3D
import numpy as np
import random
from transformers import AutoTokenizer, AutoModel

DEVICE = "cuda:0"
#if torch.cuda.is_available():
    #DEVICE = "cuda:0"

def get_seg_color(labels):
    part_num = labels.max()
    cmap_matrix = torch.tensor([[1,1,1], [1,0,0], [0,1,0], [0,0,1], [1,1,0], [1,0,1],
                [0,1,1], [0.5,0.5,0.5], [0.5,0.5,0], [0.5,0,0.5],[0,0.5,0.5],
                [0.1,0.2,0.3],[0.2,0.5,0.3], [0.6,0.3,0.2], [0.5,0.3,0.5],
                [0.6,0.7,0.2],[0.5,0.8,0.3]])[:part_num+1,:]
    onehot = F.one_hot(labels.long(), num_classes=part_num+1) * 1.0 # n_pts, part_num+1, each row 00.010.0, first place is unlabeled (0 originally)
    pts_rgb = torch.matmul(onehot, cmap_matrix)
    return pts_rgb

def get_legend(parts):
    colors = ["white", "red", "green", "blue", "yellow", "magenta", "cyan","grey", "olive",
                "purple", "teal", "navy", "darkgreen", "brown", "pinkpurple", "yellowgreen", "limegreen"]
    legends = []
    i = 1
    for part in parts:
        cur_color = colors[i]
        legends.append(f"{cur_color}:{part}")
        i += 1
    legend = "  ".join(legends)
    return legend


def load_model():
    model = Find3D.from_pretrained("ziqima/find3d-checkpt0", dim_output=768)
    #model.load_state_dict(torch.load("find3d_checkpoint.pth")["model_state_dict"])
    model.eval()
    model = model.to(DEVICE)
    return model

def set_seed(seed):
    torch.manual_seed(seed)
    if DEVICE != "cpu":
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)

def fnv_hash_vec(arr):
    """
    FNV64-1A
    """
    assert arr.ndim == 2
    # Floor first for negative coordinates
    arr = arr.copy()
    arr = arr.astype(np.uint64, copy=False)
    hashed_arr = np.uint64(14695981039346656037) * np.ones(
        arr.shape[0], dtype=np.uint64
    )
    for j in range(arr.shape[1]):
        hashed_arr *= np.uint64(1099511628211)
        hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j])
    return hashed_arr


def grid_sample_numpy(xyz, rgb, normal, grid_size): # this should hopefully be 5000 or close
    xyz = xyz.cpu().numpy()
    rgb = rgb.cpu().numpy()
    normal = normal.cpu().numpy()

    scaled_coord = xyz / np.array(grid_size)
    grid_coord = np.floor(scaled_coord).astype(int)
    min_coord = grid_coord.min(0)
    grid_coord -= min_coord
    scaled_coord -= min_coord
    min_coord = min_coord * np.array(grid_size)
    key = fnv_hash_vec(grid_coord)
    idx_sort = np.argsort(key)
    key_sort = key[idx_sort]
    _, inverse, count = np.unique(key_sort, return_inverse=True, return_counts=True)
    idx_select = (
        np.cumsum(np.insert(count, 0, 0)[0:-1])
        + np.random.randint(0, count.max(), count.size) % count
    )
    idx_unique = idx_sort[idx_select]

    grid_coord = grid_coord[idx_unique]
    
    xyz = torch.tensor(xyz[idx_unique]).to(DEVICE)
    rgb = torch.tensor(rgb[idx_unique]).to(DEVICE)
    normal = torch.tensor(normal[idx_unique]).to(DEVICE)
    grid_coord = torch.tensor(grid_coord).to(DEVICE)

    return xyz, rgb, normal, grid_coord


def encode_text(texts):
    siglip = AutoModel.from_pretrained("google/siglip-base-patch16-224") # dim 768 #"google/siglip-so400m-patch14-384")
    tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")#"google/siglip-so400m-patch14-384")
    inputs = tokenizer(texts, padding="max_length", return_tensors="pt")
    for key in inputs:
        inputs[key] = inputs[key].to(DEVICE)
    with torch.no_grad():
        text_feat = siglip.to(DEVICE).get_text_features(**inputs)
    text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-12)
    return text_feat


def preprocess_pcd(xyz, rgb, normal): # rgb should be 0-1
    assert rgb.max() <=1
    # normalize
    # this is the same preprocessing I do before training
    center = xyz.mean(0)
    scale = max((xyz - center).abs().max(0)[0])
    xyz -= center
    xyz *= (0.75 / float(scale)) # put in 0.75-size box

    # axis swap
    xyz = torch.cat([-xyz[:,0].reshape(-1,1), xyz[:,2].reshape(-1,1), xyz[:,1].reshape(-1,1)], dim=1)

    # center shift
    xyz_min = xyz.min(dim=0)[0]
    xyz_max = xyz.max(dim=0)[0]
    xyz_max[2] = 0
    shift = (xyz_min+xyz_max)/2
    xyz -= shift

    # subsample/upsample to 5000 pts for grid sampling
    if xyz.shape[0] != 5000:
        random_indices = torch.randint(0, xyz.shape[0], (5000,))
        pts_xyz_subsampled = xyz[random_indices]
        pts_rgb_subsampled = rgb[random_indices]
        normal_subsampled = normal[random_indices]
    else:
        pts_xyz_subsampled = xyz
        pts_rgb_subsampled = rgb
        normal_subsampled = normal

    # grid sampling
    pts_xyz_gridsampled, pts_rgb_gridsampled, normal_gridsampled, grid_coord = grid_sample_numpy(pts_xyz_subsampled, pts_rgb_subsampled, normal_subsampled, 0.02)

    # another center shift, z=false
    xyz_min = pts_xyz_gridsampled.min(dim=0)[0]
    xyz_min[2] = 0
    xyz_max = pts_xyz_gridsampled.max(dim=0)[0]
    xyz_max[2] = 0
    shift = (xyz_min+xyz_max)/2
    pts_xyz_gridsampled -= shift
    xyz -= shift

    # normalize color
    pts_rgb_gridsampled = pts_rgb_gridsampled / 0.5 - 1

    # combine color and normal as feat
    feat = torch.cat([pts_rgb_gridsampled, normal_gridsampled], dim=1)

    data_dict = {}
    data_dict["coord"] = pts_xyz_gridsampled
    data_dict["feat"] = feat
    data_dict["grid_coord"] = grid_coord
    data_dict["xyz_full"] = xyz
    data_dict["offset"] = torch.tensor([pts_xyz_gridsampled.shape[0]])
    return data_dict