diff --git "a/E_Commerce_Category_Classification.ipynb" "b/E_Commerce_Category_Classification.ipynb" new file mode 100644--- /dev/null +++ "b/E_Commerce_Category_Classification.ipynb" @@ -0,0 +1,2647 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "DRi1KwDDZz3a" + }, + "source": [ + "# Downloading The Data\n", + "The data for this project is Downloaded from kaggle(A Famous platform for Data Sience), If you want to reproduce this note book follow the steps explained in [this article](https://www.analyticsvidhya.com/blog/2021/06/how-to-load-kaggle-datasets-directly-into-google-colab/) .\n", + "\n", + "After downloading your kaggle credentials, upload the kaggle.json file to your google drive in a folder called kaggle." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eTNtUJkEaJXk" + }, + "outputs": [], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/gdrive')\n", + "\n", + "!cp '/content/gdrive/My Drive/Kaggle/kaggle.json' kaggle.json\n", + "\n", + "! pip install kaggle\n", + "! mkdir ~/.kaggle\n", + "! cp kaggle.json ~/.kaggle/\n", + "! chmod 600 ~/.kaggle/kaggle.json\n", + "\n", + "! kaggle datasets download -d saurabhshahane/ecommerce-text-classification" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KZ_HtjFDpUsL" + }, + "outputs": [], + "source": [ + "! unzip /content/ecommerce-text-classification.zip -d /content/data" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Introduction\n", + "In this note book we will fine tune a text classification **Bert** model on an **Ecomerce category data**.\n", + "We have 4 Categories, **Electronics**, **Household**, **Books** and **Clothing & Accessories**.\n", + "\n", + "### Metrics\n", + "We'll use **Precision**, **Recall**, **F1-score** and **Accuracy**.\n", + "\n", + "### Strategy Overview\n", + "The main library used in this notebook is **transormers** form **Hugging Face**, The framework is **TensorFlow** and we are fine tuning the **distilbert-base-uncased** model form **Hugging Face** which is a text classification model." + ], + "metadata": { + "id": "cPuZWyvwhhbF" + } + }, + { + "cell_type": "markdown", + "source": [ + "# Packages" + ], + "metadata": { + "id": "SHFaGM2ff-3X" + } + }, + { + "cell_type": "markdown", + "source": [ + "We'll install Theses packages:\n", + "\n", + "\n", + "* **datasets** for importing the data to transformers.\n", + "* **transformers** that provides a variety of NLP functionality.\n", + "* **evaluate** for model evalution.\n", + "* **seqeval** for the metrics used for evaluation.\n", + "* **seaborn** for data visualisation.\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "LvkcQ8AmgChy" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ODGTcxKabJtK" + }, + "outputs": [], + "source": [ + "! pip install datasets\n", + "! pip install transformers\n", + "! pip install evaluate\n", + "! pip install seqeval" + ] + }, + { + "cell_type": "code", + "source": [ + "import tensorflow as tf\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ], + "metadata": { + "id": "4IlTLKSKg4Cx" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# Data Preprocessing" + ], + "metadata": { + "id": "OFFqNJbsN8Dj" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Missing Values" + ], + "metadata": { + "id": "3KcEvH4Re2Uh" + } + }, + { + "cell_type": "markdown", + "source": [ + "Our data has 2 columns, **label** and **text**." + ], + "metadata": { + "id": "xVDTZdnCNywQ" + } + }, + { + "cell_type": "code", + "source": [ + "dataset_df = pd.read_csv(\"/content/data/ecommerceDataset.csv\")\n", + "dataset_df = pd.DataFrame({'label': dataset_df.iloc[:,0] , 'text': dataset_df.iloc[:,1]})\n", + "dataset_df.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "j1071yyIN6lw", + "outputId": "0aef50ae-7393-4e48-fe4e-8a4bea2d7215" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " label text\n", + "0 Household SAF 'Floral' Framed Painting (Wood, 30 inch x ...\n", + "1 Household SAF 'UV Textured Modern Art Print Framed' Pain...\n", + "2 Household SAF Flower Print Framed Painting (Synthetic, 1...\n", + "3 Household Incredible Gifts India Wooden Happy Birthday U...\n", + "4 Household Pitaara Box Romantic Venice Canvas Painting 6m..." + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
labeltext
0HouseholdSAF 'Floral' Framed Painting (Wood, 30 inch x ...
1HouseholdSAF 'UV Textured Modern Art Print Framed' Pain...
2HouseholdSAF Flower Print Framed Painting (Synthetic, 1...
3HouseholdIncredible Gifts India Wooden Happy Birthday U...
4HouseholdPitaara Box Romantic Venice Canvas Painting 6m...
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's see how much of our data is missing." + ], + "metadata": { + "id": "N0zflXUEOGOD" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "u_8qypcicIBr", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 281 + }, + "outputId": "9ccfa94e-86c4-44a1-e550-c969c8bccdf6" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAEICAYAAAA6InEPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYpElEQVR4nO3deZxlZX3n8c/XZtUGBFoURGxBEBtFhRZRIWFERxQQo6BGZFzIuEXjEseARoeok0HNoriMmmiEjKiITlRcgBjADYEG2QXZGtmkRdkFZfnNH+cpc7uo7rpV3beqT9fn/XrdV53znO333LpV3zrPOXVvqgpJkvrqQbNdgCRJq8IgkyT1mkEmSeo1g0yS1GsGmSSp1wwySVKvGWTSapDk80k+sBr394EkNyX55era5xSOvWeSS1dh+22S3JFk3uqsa1UlqSSPne06tPoZZForJFma5K72C/TmJN9K8qjZrmsik/1CTbIN8JfAoqp6xMxV1qmqH1TV41Zh+19U1fyqum911iWtiEGmtcn+VTUf2BK4EfjYdHaSZJ3VWtXUbQP8uqqWTXXDNaB2acYZZFrrVNXdwPHAorG2JPsm+WmS25Jck+SIgWUL21nSoUl+AfzH+H0m2SvJtUne1Yb8liY5eEU1JPnvSS5P8psk30iyVWv/flvlvHb2+NJx2z0bOBnYqi3/fGt/QZKLktyS5NQkjx/YZmmSv0pyPnDnRGHW+vfGJJcluT3J+5Nsl+TH7Tk5Lsl6g30d2PavklzXtrs0yd6tfbckS9r2Nyb5h3HP5zpt/tR2vB+1fZyUZMHA/v9bkquT/DrJe1p/nj1BH56W5JeDQ5ZJ/qT1e6ye09tzdEOSj4/1aYJ9nZrkzwbmX5XkhwPzOyY5uX3/Lk3ykoFlz09ycevLdUneMdExNIOqyoeP3j+ApcCz2/SDgaOBYwaW7wU8ke6Pt53pzthe2JYtBAo4BngIsOEE+98LuBf4B2B94I+BO4HHteWfBz7Qpp8F3ATs0tb9GPD9gX0V8NiV9GUv4NqB+R3asZ4DrAu8E7gcWG+g7+cCj5qo9oFjfh3YGNgJ+B3wPWBbYBPgYuCV448PPA64Bthq4Lnark2fDhzSpucDu497Ptdp86cCV7R+bNjmj2zLFgF3AHsA6wF/B9wz9r2coB9XAM8ZmP8KcFib3hXYHVin1fAz4K0TPe+thj8bWPYq4Idt+iGtz69u+3pK+34uastvAPZs05sCu8z263+uPzwj09rk35LcAtxK90v/w2MLqurUqrqgqu6vqvOBL9KF0aAjqurOqrprJcd4T1X9rqpOA74FvGSCdQ4GPldV51TV74DDgacnWTjNfr0U+FZVnVxV99D9st8QeMbAOkdV1TWT1P6hqrqtqi4CLgROqqorq+pW4Dt0v7DHu48ujBclWbeqllbVFW3ZPcBjkyyoqjuq6icrOfa/VNXPW33HAU9u7QcC36yqH1bV74H30gXOinwR+FOAJBsBz29tVNXZVfWTqrq3qpYCn+aB3+Nh7Acsrap/afv6KfBV4KCBfi9KsnFV3VxV50zjGFqNDDKtTV5YVQ8FNgDeBJyW5BHwh2GpU5L8KsmtwOuBBeO2v2aS/d9cVXcOzF8NbDXBelu1ZQBU1R3Ar4FHTqk3K97f/a3Wwf1NVjt0Z6Fj7ppgfv74DarqcuCtwBHAsiRfGhsmBQ6lO8u6JMlZSfZbybEH77787cCxthqsvap+S/dcrcixwIuSrA+8CDinqq4GSLJDkhPa8ONtwN/ywO/xMB4NPK0NUd7S/jg6GBi78ebFdAF6dZLTkjx9GsfQamSQaa1TVfdV1dfozib2aM3HAt8AHlVVmwCfAjJ+00l2vWmShwzMbwNcP8F619P9MgSgbbM5cN3QnVj5/kI3jDi4v5F9jEVVHVtVe7QaCvhga7+sqv4U2KK1HT/u+RnGDcDWYzNJNqR7rlZUy8V0of484OV039cx/we4BNi+qjYG3sUDv8dj7qQbgh4zeHfoNcBpVfXQgcf8qnpDq+GsqjqArt//RneGqVlkkGmtk84BdNcvftaaNwJ+U1V3J9mN7pfgdPxNkvWS7Ek3BPWVCdb5IvDqJE9uZw5/C5zRhrugOxPadgrHPA7YN8neSdaluzX/d8CPp9mHoSV5XJJntX7cTXfmdn9b9ookD2tniLe0Te6f4iGOB/ZP8ox2Y8YRrDh8xhwLvAX4I5Z//jcCbgPuSLIj8IaV7ONcujO7B6f7V4hDB5adAOyQ5JAk67bHU5M8vn3vD06ySRvmvY2p91mrmUGmtck3k9xB98vlf9HdvHBRW/ZG4H1Jbqe7DjOdv6J/CdxMd4b0BeD1VXXJ+JWq6t+B99BdV7kB2A542cAqRwBHt2Gria6xjd/fpcAr6G4auQnYn+5fDX4/jT5M1frAke24v6Q7Czm8LdsHuKg95x8FXjbJNboHaN+fNwNfonuu7gCW0QX1ioxd3/yPqrppoP0ddH+g3A78E/DllezjH4Hf0/1RcTTd93OsptuB/0r3Pbuert8fpHsuAA4Blrbhy9fTDTsO/iP4NpN2XKtVqvxgTWkySfYC/m9VbT3Zupq+JPPpzu62r6qrZrse9YNnZJJmVZL92xDfQ+juyLyA7l8KpKEYZJJm2wF0Q3jXA9vTDVE6VKShObQoSeo1z8gkSb3mG4zOggULFtTChQtnuwxJ6o0FCxZw4oknnlhV+4xfZpDNgoULF7JkyZLZLkOSemXwzaYHObQoSeo1g0yS1GsGmSSp1wwySVKvGWSSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUawaZJKnXDDJJUq8ZZJKkXjPIJEm9ZpBJknrNIJMk9ZpBJknqNYNMktRrBpkkqdcMMklSrxlkkqReM8gkSb1mkEmSes0gkyT1mkEmSeo1g0yS1GsGmSSp1wwySVKvGWSSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUawaZJKnXDDJJUq8ZZJKkXjPIJEm9ZpBJknrNIJMk9ZpBJknqNYNMktRrBpkkqdcMMklSrxlkkqReM8gkSb1mkEmSes0gkyT1mkEmSeo1g0yS1GszFmRJNkxyWpJ5SRYmuSvJuQOP9Vaw3cIkF67GOj7RjnfxuBoOXMX9vinJa1ZXnZKk4awzg8d6DfC1qrovCcAVVfXkGTw+AFX159AFJHDC+BqSrFNV905j158DftS+SpJmyEwOLR4MfH1FC9uZ1w+SnNMez5hgnZ2SnNnOoM5Psn1rf8VA+6eTzJtKYUn2asf+BnDx+LPAJO9IckSb3i7Jd5Oc3bbZEaCqfgssTbLbVI4tSVo1MxJkbdhw26paOtC83cCw3ieAZcBzqmoX4KXAURPs6vXAR9tZ1GLg2iSPb+s/s7XfRxeaU7UL8Jaq2mGS9T4DvLmqdgXeAXxyYNkSYM+JNkry2iRLkiz51a9+NY3yJEkTmamhxQXALePalhtaTLIJ8PEkY2E0UaCcDrw7ydZ0w5SXJdkb2BU4qw1ZbkgXilN1ZlVdtbIVkswHngF8pR0LYP2BVZYBO060bVV9hi4EWbx4cU2jPknSBGYqyO4CNphknbcBNwJPojtTvHv8ClV1bJIzgH2Bbyd5HRDg6Ko6fBVrvHNg+l6WP1sdq/1BwC0ruba3AV1fJUkzZEaGFqvqZmBekpWF2SbADVV1P3AI8IDrXEm2Ba6sqqPorrftDHwPODDJFm2dzZI8uk0fM81rVjcCWyTZPMn6wH6tH7cBVyU5qO0/SZ40sN0OwGq7w1KSNLmZvNnjJGCPlSz/JPDKJOfRDc/dOcE6LwEuTHIu8ATgmKq6GPhr4KQk5wMnA1u29XcGrp9qoVV1D/A+4My2v0sGFh8MHNrqvAg4YGDZM9v6kqQZkqqZuVyTZBfgbVV1yAwdb2Pgs1V10Awd7ynA24fp3+LFi2vJkiUzUJUkrT2SnF1Vi8e3z9gZWVWdA5wy1VvjV+F4t81UiDULgPfM4PEkSczsP0RTVWvtPwtXlUOKkjQLfK9FSVKvGWSSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUawaZJKnXDDJJUq8ZZJKkXjPIJEm9ZpBJknrNIJMk9ZpBJknqNYNMktRrBpkkqdcMMklSrxlkkqReM8gkSb1mkEmSes0gkyT1mkEmSeo1g0yS1GsGmSSp1wwySVKvDRVkSf51mDZJkmbasGdkOw3OJJkH7Lr6y5EkaWpWGmRJDk9yO7Bzktva43ZgGfCNGalQkqSVWGmQVdX/rqqNgA9X1cbtsVFVbV5Vh81QjZIkrdCwQ4uXD84kmZfkf46gHkmSpmTYINs7ybeTbJnkCcBPgI1GWJckSUNZZ5iVqurlSV4KXADcCby8qn400sokSRrCsLffbw+8BfgqcDVwSJIHj7IwSZKGMezQ4jeB91bV64A/Bi4DzhpZVZIkDWmooUVgt6q6DaCqCvj7JN8cXVmSJA1n2DOyDZN8Nsl3AZIsAvYcXVmSJA1n2CD7PHAisGWb/znw1lEUJEnSVAwbZAuq6jjgfoCquhe4b2RVSZI0pGGD7M4kmwMFkGR34NaRVSVJ0pCGvdnj7XTvrbhdkh8BDwMOGllVkiQNadggu4jutvvHAQEuxc8ykyStAYYNo9Or6t6quqiqLqyqe4DTR1mYJEnDWOkZWZJHAI+ku/3+KXRnYwAbA76zhyRp1k02tPhc4FXA1sDf859BdjvwrtGVJUnScFYaZFV1NHB0khdX1VdnqCZJkoY21DWy8SGW5IAkTxtNSZIkDW/YuxbHexrwxCTrVNXzVmdBkiRNxbSCrKq8PiZJWiNMdtfii1a2vKq+tnrLkSRpaiY7I9t/JcsKMMgkSbNqsrsWXz1ThUiSNB1D3bWY5OHt88i+0+YXJTl0tKVJkjS5qX4e2VZt3s8jkyStEfw8MklSr/l5ZJKkXluVzyM7cGRVSZI0pKGCrKrOSbLc55G1j3KRJGlWDRVkSTYA3gjsQTe8+IMkn6qqu0dZnCRJkxl2aPEYuo9u+Vibfznwr8BBoyhKkqRhDRtkT6iqRQPzpyS5eBQFSZI0FcPetXhOu1MRgPYRLktGU5IkScOb7E2DL6C7JrYu8OMkv2jzjwYuGX15kiSt3GRDi/vNSBWSJE3TZG8afPXgfJItgA1GWpEkSVMw7JsGvyDJZcBVwGnAUuA7I6xLkqShDHuzx/uB3YGfV9VjgL2Bn4ysKkmShjRskN1TVb8GHpTkQVV1CrB4hHVJkjSUYf+P7JYk84HvA19Isgy4c3RlSZI0nGHPyA4A7gLeBnwXuALYf1RFSZI0rGHfNHjw7OvoEdUiSdKUTfYP0bfTPoNs/CKgqmrjkVQlSdKQJvs/so1mqhBJkqZj2GtkkiStkYa9a1Gr0QXX3crCw74122VI0oxaeuS+I9mvZ2SSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUawaZJKnXDDJJUq8ZZJKkXjPIJEm9ZpBJknrNIJMk9ZpBJknqNYNMktRrBpkkqdcMMklSrxlkkqReM8gkSb1mkEmSes0gkyT1mkEmSeo1g0yS1GsGmSSp1wwySVKvjSzIkmyY5LQk85IsTHJXknMHHuutYLuFSS5czbV8PslVA8f+i0nWPXAax9gvyftWrVJJ0lStM8J9vwb4WlXdlwTgiqp68giPN5n/UVXHj3D/3wLen+TIqvrtCI8jSRowyqHFg4Gvr2hhO/P6QZJz2uMZE6yzU5Iz21nU+Um2b+2vGGj/dJJ5Uy0uyXuTnJXkwiSfSUvbcescmeTiduy/a20PS/LVtu1ZSZ4JUFUFnArst4LjvTbJkiRL7vvtrVMtV5K0AiMJsjZsuG1VLR1o3m5gaO8TwDLgOVW1C/BS4KgJdvV64KPtTG4xcG2Sx7f1n9na76MLzcl8eOD4TwQ+XlVPraonABsyLoCSbA78CbBTVe0MfKAt+ijwj1X1VODFwD8PbLYE2HOig1fVZ6pqcVUtnvfgTYYoV5I0jFENLS4AbhnXttzQYpJNgI8nGQujHSbYz+nAu5NsTTdMeVmSvYFdgbPaSdSGdKE4meWGFpO8OMk7gQcDmwEXAd8cWP9W4G7gs0lOAE5o7c8GFg2cwG2cZH5V3dHq2GqIWiRJq8moguwuYINJ1nkbcCPwJLozw7vHr1BVxyY5A9gX+HaS1wEBjq6qw6dbXJINgE8Ci6vqmiRHjK+3qu5NshuwN3Ag8CbgWa3W3avqAfW2fdw13bokSVM3kqHFqroZmNcCY0U2AW6oqvuBQ4AHXOdKsi1wZVUdRXe9bWfge8CBSbZo62yW5NFt+pgWPpMZq+umJPPpgmr8secDm1TVt+lC90lt0UnAmwfWG7yBZQdgtd5xKUlauVHe7HESsMdKln8SeGWS84AdgTsnWOclwIVJzgWeABxTVRcDfw2clOR84GRgy7b+zsD1kxVWVbcA/0QXOicCZ02w2kbACe0YPwTe3tr/AljcbgC5mO463pj/Qnf3oiRphqS72W4EO052Ad5WVYeM5AAPPN7GwGer6qCZON4Ex384cGxV7T3ZuutvuX1t+cqPzEBVkrTmWHrkvqu0fZKzq2rx+PaRnZFV1TnAKdO5NX6ax7tttkKs2Qb4y1k8viTNSaP8h2iq6nOj3P+apKomGp6UJI2Y77UoSeo1g0yS1GsGmSSp1wwySVKvGWSSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUawaZJKnXDDJJUq8ZZJKkXjPIJEm9ZpBJknrNIJMk9ZpBJknqNYNMktRrBpkkqdfWme0C5qInPnITlhy572yXIUlrBc/IJEm9ZpBJknrNIJMk9ZpBJknqNYNMktRrBpkkqdcMMklSrxlkkqReM8gkSb1mkEmSes0gkyT1mkEmSeo1g0yS1GsGmSSp1wwySVKvGWSSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUawaZJKnXDDJJUq8ZZJKkXjPIJEm9ZpBJknotVTXbNcw5SW4HLp3tOmbJAuCm2S5iltj3uWsu93919f0mgKraZ/yCdVbDzjV1l1bV4tkuYjYkWWLf55653HeY2/2fib47tChJ6jWDTJLUawbZ7PjMbBcwi+z73DSX+w5zu/8j77s3e0iSes0zMklSrxlkkqReM8hmUJJ9klya5PIkh812PdOV5HNJliW5cKBtsyQnJ7msfd20tSfJUa3P5yfZZWCbV7b1L0vyyoH2XZNc0LY5KklmtocrluRRSU5JcnGSi5K8pbXPlf5vkOTMJOe1/v9Na39MkjNazV9Osl5rX7/NX96WLxzY1+Gt/dIkzx1oX2N/TpLMS/LTJCe0+TnRb4AkS9vr8twkS1rbmvG6ryofM/AA5gFXANsC6wHnAYtmu65p9uWPgF2ACwfaPgQc1qYPAz7Ypp8PfAcIsDtwRmvfDLiyfd20TW/alp3Z1k3b9nmz3eeBfm4J7NKmNwJ+DiyaQ/0PML9Nrwuc0Wo9DnhZa/8U8IY2/UbgU236ZcCX2/Si9jOwPvCY9rMxb03/OQHeDhwLnNDm50S/W+1LgQXj2taI171nZDNnN+Dyqrqyqn4PfAk4YJZrmpaq+j7wm3HNBwBHt+mjgRcOtB9TnZ8AD02yJfBc4OSq+k1V3QycDOzTlm1cVT+p7tV9zMC+Zl1V3VBV57Tp24GfAY9k7vS/quqONrtuexTwLOD41j6+/2PPy/HA3u0v7QOAL1XV76rqKuByup+RNfbnJMnWwL7AP7f5MAf6PYk14nVvkM2cRwLXDMxf29rWFg+vqhva9C+Bh7fpFfV7Ze3XTtC+xmnDRU+hOyuZM/1vw2vnAsvofhFdAdxSVfe2VQZr/kM/2/Jbgc2Z+vOyJvgI8E7g/ja/OXOj32MKOCnJ2Ule29rWiNe9b1Gl1a6qKsla/X8dSeYDXwXeWlW3DQ7nr+39r6r7gCcneSjw/4AdZ7mkkUuyH7Csqs5Ostds1zNL9qiq65JsAZyc5JLBhbP5uveMbOZcBzxqYH7r1ra2uLEND9C+LmvtK+r3ytq3nqB9jZFkXboQ+0JVfa01z5n+j6mqW4BTgKfTDR2N/WE8WPMf+tmWbwL8mqk/L7PtmcALkiylG/Z7FvBR1v5+/0FVXde+LqP7A2Y31pTX/WxfQJwrD7qz3yvpLvCOXczdabbrWoX+LGT5mz0+zPIXfT/Upvdl+Yu+Z7b2zYCr6C74btqmN2vLxl/0ff5s93egn6Ebv//IuPa50v+HAQ9t0xsCPwD2A77C8jc9vLFN/znL3/RwXJveieVveriS7oaHNf7nBNiL/7zZY070G3gIsNHA9I+BfdaU1/2sP0Fz6UF3J8/P6a4pvHu261mFfnwRuAG4h24s+1C68f/vAZcB/z7w4gzwidbnC4DFA/t5Dd3F7suBVw+0LwYubNt8nPYONGvCA9iD7lrB+cC57fH8OdT/nYGftv5fCLy3tW/bfhFd3n65r9/aN2jzl7fl2w7s692tj5cycIfamv5zwvJBNif63fp5XntcNFbfmvK69y2qJEm95jUySVKvGWSSpF4zyCRJvWaQSZJ6zSCTJPWaQSZJ6jWDTJLUa/8f/CR3cEqeB0gAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "\n", + "dataset_df.isna().value_counts().plot(kind='barh', title='Bar plot for missing values.')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "As we can see, there's just one missing value so will simply drop it." + ], + "metadata": { + "id": "qnqWeSCNNfem" + } + }, + { + "cell_type": "code", + "source": [ + "dataset_df.dropna(inplace=True)" + ], + "metadata": { + "id": "PdsqnQhWK4wJ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Data Transformation" + ], + "metadata": { + "id": "gREgDKDwhuAE" + } + }, + { + "cell_type": "markdown", + "source": [ + "In this task we have 4 Categories, **Electronics**, **Household**, **Books** and **Clothing & Accessories**. We'll encode the categorical variable **label** using label encoding. \n", + "\n", + "\n" + ], + "metadata": { + "id": "A-xsEQwLObgI" + } + }, + { + "cell_type": "code", + "source": [ + "mapping = {\"Electronics\": 0, \"Household\": 1, \"Books\": 2, \"Clothing & Accessories\": 3}\n", + "dataset_df.replace(mapping, inplace=True)" + ], + "metadata": { + "id": "RacWZaP3hNd_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Now we'll use the **datasets** library to convert the data to a **transformers** compatible format. also we'll split the data to **train** and **test** splits, the **test** split is 30% of the total data." + ], + "metadata": { + "id": "kLpgMF5fPGzJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xZVOPl-iKEmh" + }, + "outputs": [], + "source": [ + "from datasets import Dataset\n", + "dataset = Dataset.from_pandas(dataset_df, split='train')\n", + "dataset = dataset.train_test_split(test_size=0.3)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's take a look at an example from the train set." + ], + "metadata": { + "id": "bD4yHqmzeWtU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VwRGbTEBgseQ", + "outputId": "b312479b-01c8-4fb0-89bf-2af22a162df8" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'label': 1,\n", + " 'text': 'SEECO SE-2001C Rear Footrest for Royal Bullet Classic SEECO SE-2001C Rear Footrest for Royal Bullet Classic.',\n", + " '__index_level_0__': 2730}" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "dataset['train'][1000]" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now we'll use the appropriate Tokenizer and Collator for our task. padding is also required for batching." + ], + "metadata": { + "id": "T1CE70HbPrRt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PKdFpTO-hmbV", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "a104262d43954832b39f358f201c113b", + "a373ca4f2548466f94a717c02d3d3a03", + "108d7b482e4841549eb1d665389c95aa", + "c9cbf60a26444ed093af95e3401212ca", + "4b36fe3afe3745c6b3604789dcd394d9", + "6aa019c6a4fa4351b4a59b7f0745a99c", + "7c61ad527a184364af7b2ff5ef9678ae", + "7acfae07c26142feb18f3822e7fee982", + "2df2b76b7fa3493e91be7686990f5906", + "06d345ff4bcc495e886f55041e85f51e", + "808c04a3cb96411198f428df77ed170d", + "f2082105e72c4cd8a9a39d3c6aeb5514", + "4a7f6763d3124ea3bed7d39d35215c08", + "909a539d091e4345b22c80c084703515", + "f9e59832311241728c56d0fbb296d6fe", + "035c67a6fc784317b2b96a3f141d4088", + "ab11ed7eab414e94b11c4ca2f114e4b8", + "bc2dce4c8dde4261a07238d26c3b6a72", + "fa5f04cced5240099883c6028f24e964", + "8ee9843a3eee4b63b4996ca2f1d33b01", + "1f8e044c1edd4f459284073509a9e8ea", + "f7c894bab65a450b935f7a2d187539e0" + ] + }, + "outputId": "0d9bd069-6b12-48fd-9168-4898ab63bf4f" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/36 [00:00
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. " + } + }, + "c7a217c50ce24f9598338a17f6d76865": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_bc30b6e3a7f346639505cc466a11ccc5", + "placeholder": "​", + "style": "IPY_MODEL_cd859ba94c89478eba9a92db90a2b94c", + "value": "" + } + }, + "686d29b40b1247ec9d5b7273db83a893": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_238afda0c11d47baae046947900fa26e", + "style": "IPY_MODEL_1e497012b6914a1a9560a3362e1590a5", + "value": true + } + }, + "ecdabeee65684707b5c4f455d67a0ace": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_9597c30d61ea48d09dedc2fc6c376b7e", + "style": "IPY_MODEL_415c8799936f494695dcc5b5bdeb7f56", + "tooltip": "" + } + }, + "06d647d92a4f484faf37fb940ad0e00b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc8e86ff0a7f46d199a3e9aeafdf3e13", + "placeholder": "​", + "style": "IPY_MODEL_26e8928d782349d0a6ff644ceb643ec8", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " + } + }, + "7142cfeafe2343fb8cfb07742768f44e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "049983ddf3c64b208c6332ba2361e58c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24d5ded9f8ad4429a97c7288f7d5bb2b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bc30b6e3a7f346639505cc466a11ccc5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd859ba94c89478eba9a92db90a2b94c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "238afda0c11d47baae046947900fa26e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e497012b6914a1a9560a3362e1590a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9597c30d61ea48d09dedc2fc6c376b7e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "415c8799936f494695dcc5b5bdeb7f56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "dc8e86ff0a7f46d199a3e9aeafdf3e13": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26e8928d782349d0a6ff644ceb643ec8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8e16d263cdb44f67a16da316ad96e386": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_47e90e19d0fa444684f3471781f7a6e3", + "IPY_MODEL_51ada4e3d6d24ba881f1c1406becd311", + "IPY_MODEL_de50e0f6b7a44481a959faab5f853397" + ], + "layout": "IPY_MODEL_6407dbe823c346b0812114e2a0019045" + } + }, + "47e90e19d0fa444684f3471781f7a6e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1551e6fc0a4e45edac9735fdbd033323", + "placeholder": "​", + "style": "IPY_MODEL_695e43ab2fea441b8e8182700bc5f995", + "value": "Downloading builder script: 100%" + } + }, + "51ada4e3d6d24ba881f1c1406becd311": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31f747d987b14f95875aa37478373630", + "max": 6338, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c784f85c4c34da9aeb869b15e599454", + "value": 6338 + } + }, + "de50e0f6b7a44481a959faab5f853397": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8de399c31cad4345b758c8b00729f34e", + "placeholder": "​", + "style": "IPY_MODEL_0aadd91ba84b433e85fc97840dbeee03", + "value": " 6.34k/6.34k [00:00<00:00, 412kB/s]" + } + }, + "6407dbe823c346b0812114e2a0019045": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1551e6fc0a4e45edac9735fdbd033323": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "695e43ab2fea441b8e8182700bc5f995": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31f747d987b14f95875aa37478373630": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c784f85c4c34da9aeb869b15e599454": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8de399c31cad4345b758c8b00729f34e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0aadd91ba84b433e85fc97840dbeee03": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file