diff --git "a/E_Commerce_Category_Classification.ipynb" "b/E_Commerce_Category_Classification.ipynb"
new file mode 100644--- /dev/null
+++ "b/E_Commerce_Category_Classification.ipynb"
@@ -0,0 +1,2647 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DRi1KwDDZz3a"
+ },
+ "source": [
+ "# Downloading The Data\n",
+ "The data for this project is Downloaded from kaggle(A Famous platform for Data Sience), If you want to reproduce this note book follow the steps explained in [this article](https://www.analyticsvidhya.com/blog/2021/06/how-to-load-kaggle-datasets-directly-into-google-colab/) .\n",
+ "\n",
+ "After downloading your kaggle credentials, upload the kaggle.json file to your google drive in a folder called kaggle."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "eTNtUJkEaJXk"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/gdrive')\n",
+ "\n",
+ "!cp '/content/gdrive/My Drive/Kaggle/kaggle.json' kaggle.json\n",
+ "\n",
+ "! pip install kaggle\n",
+ "! mkdir ~/.kaggle\n",
+ "! cp kaggle.json ~/.kaggle/\n",
+ "! chmod 600 ~/.kaggle/kaggle.json\n",
+ "\n",
+ "! kaggle datasets download -d saurabhshahane/ecommerce-text-classification"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "KZ_HtjFDpUsL"
+ },
+ "outputs": [],
+ "source": [
+ "! unzip /content/ecommerce-text-classification.zip -d /content/data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Introduction\n",
+ "In this note book we will fine tune a text classification **Bert** model on an **Ecomerce category data**.\n",
+ "We have 4 Categories, **Electronics**, **Household**, **Books** and **Clothing & Accessories**.\n",
+ "\n",
+ "### Metrics\n",
+ "We'll use **Precision**, **Recall**, **F1-score** and **Accuracy**.\n",
+ "\n",
+ "### Strategy Overview\n",
+ "The main library used in this notebook is **transormers** form **Hugging Face**, The framework is **TensorFlow** and we are fine tuning the **distilbert-base-uncased** model form **Hugging Face** which is a text classification model."
+ ],
+ "metadata": {
+ "id": "cPuZWyvwhhbF"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Packages"
+ ],
+ "metadata": {
+ "id": "SHFaGM2ff-3X"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "We'll install Theses packages:\n",
+ "\n",
+ "\n",
+ "* **datasets** for importing the data to transformers.\n",
+ "* **transformers** that provides a variety of NLP functionality.\n",
+ "* **evaluate** for model evalution.\n",
+ "* **seqeval** for the metrics used for evaluation.\n",
+ "* **seaborn** for data visualisation.\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "LvkcQ8AmgChy"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ODGTcxKabJtK"
+ },
+ "outputs": [],
+ "source": [
+ "! pip install datasets\n",
+ "! pip install transformers\n",
+ "! pip install evaluate\n",
+ "! pip install seqeval"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import tensorflow as tf\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns"
+ ],
+ "metadata": {
+ "id": "4IlTLKSKg4Cx"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Data Preprocessing"
+ ],
+ "metadata": {
+ "id": "OFFqNJbsN8Dj"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Missing Values"
+ ],
+ "metadata": {
+ "id": "3KcEvH4Re2Uh"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Our data has 2 columns, **label** and **text**."
+ ],
+ "metadata": {
+ "id": "xVDTZdnCNywQ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "dataset_df = pd.read_csv(\"/content/data/ecommerceDataset.csv\")\n",
+ "dataset_df = pd.DataFrame({'label': dataset_df.iloc[:,0] , 'text': dataset_df.iloc[:,1]})\n",
+ "dataset_df.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "j1071yyIN6lw",
+ "outputId": "0aef50ae-7393-4e48-fe4e-8a4bea2d7215"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " label text\n",
+ "0 Household SAF 'Floral' Framed Painting (Wood, 30 inch x ...\n",
+ "1 Household SAF 'UV Textured Modern Art Print Framed' Pain...\n",
+ "2 Household SAF Flower Print Framed Painting (Synthetic, 1...\n",
+ "3 Household Incredible Gifts India Wooden Happy Birthday U...\n",
+ "4 Household Pitaara Box Romantic Venice Canvas Painting 6m..."
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " label | \n",
+ " text | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Household | \n",
+ " SAF 'Floral' Framed Painting (Wood, 30 inch x ... | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Household | \n",
+ " SAF 'UV Textured Modern Art Print Framed' Pain... | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Household | \n",
+ " SAF Flower Print Framed Painting (Synthetic, 1... | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Household | \n",
+ " Incredible Gifts India Wooden Happy Birthday U... | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Household | \n",
+ " Pitaara Box Romantic Venice Canvas Painting 6m... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 21
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Let's see how much of our data is missing."
+ ],
+ "metadata": {
+ "id": "N0zflXUEOGOD"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "u_8qypcicIBr",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 281
+ },
+ "outputId": "9ccfa94e-86c4-44a1-e550-c969c8bccdf6"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "