#!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- #!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # gradio demo executable # -------------------------------------------------------- import os import torch import tempfile from contextlib import nullcontext from mast3r.demo import get_args_parser, main_demo from mast3r.model import AsymmetricMASt3R from mast3r.utils.misc import hash_md5 import matplotlib.pyplot as pl pl.ion() torch.backends.cuda.matmul.allow_tf32 = True # for GPU >= Ampere and PyTorch >= 1.12 import argparse def get_args_parser(): parser = argparse.ArgumentParser(description="MASt3R Demo") parser.add_argument("--weights", type=str, default=None, help="Path to the weights file.") parser.add_argument("--model_name", type=str, default=None, choices=[ 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'], help="Name of the model to use.") parser.add_argument("--device", type=str, default='cuda', help="Device to run the model on.") parser.add_argument("--server_name", type=str, default=None, help="Server name to use.") parser.add_argument("--local_network", action='store_true', help="Run on local network.") parser.add_argument("--image_size", type=int, choices=[512, 224], default=512, help="Size of the images.") parser.add_argument("--server_port", type=int, default=None, help="Port for the server.") parser.add_argument("--tmp_dir", type=str, default=None, help="Temporary directory.") parser.add_argument("--silent", action='store_true', help="Run silently.") parser.add_argument("--share", default=True, action='store_true', help="Share the application.") parser.add_argument("--gradio_delete_cache", action='store_true', help="Delete Gradio cache.") return parser def get_default_weights_path(model_name): # Construct default weights path based on model_name return f"naver/{model_name}" if __name__ == '__main__': parser = get_args_parser() args = parser.parse_args() # Set default values for required arguments if args.weights is None and args.model_name is None: args.model_name = 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' if args.weights is None: args.weights = f"naver/{args.model_name}" # Rest of the code for setting up the server and loading the model server_name = args.server_name or ('0.0.0.0' if args.local_network else '127.0.0.1') weights_path = args.weights args.device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device) chkpt_tag = hash_md5(weights_path) def get_context(tmp_dir): return tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') if tmp_dir is None \ else nullcontext(tmp_dir) with get_context(args.tmp_dir) as tmpdirname: cache_path = os.path.join(tmpdirname, chkpt_tag) os.makedirs(cache_path, exist_ok=True) main_demo(cache_path, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent, share=args.share, gradio_delete_cache=args.gradio_delete_cache)