import inspect import math from typing import Callable, List, Optional, Tuple, Union from einops import rearrange import torch import torch.nn.functional as F from torch import nn from torch import Tensor from diffusers.models.attention_processor import Attention # Global variables for attention visualization step = 0 global_timestep = 0 global_timestep2 = 0 def scaled_dot_product_average_attention_map(query, key, attn_mask=None, is_causal=False, scale=None) -> torch.Tensor: # Efficient implementation equivalent to the following: L, S = query.size(-2), key.size(-2) scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale attn_bias = torch.zeros(L, S, dtype=query.dtype) if is_causal: assert attn_mask is None temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias.to(query.dtype) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias.to(attn_weight.device) attn_weight = attn_weight.mean(dim=(1, 2)) return attn_weight class LoRALinearLayer(nn.Module): def __init__( self, in_features: int, out_features: int, rank: int = 4, network_alpha: Optional[float] = None, device: Optional[Union[torch.device, str]] = None, dtype: Optional[torch.dtype] = None, ): super().__init__() self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank self.out_features = out_features self.in_features = in_features nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class MultiSingleStreamBlockLoraProcessor(nn.Module): def __init__(self, in_features: int, out_features: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.q_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.lora_weights = lora_weights def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond = False, ) -> torch.FloatTensor: batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) return hidden_states class MultiDoubleStreamBlockLoraProcessor(nn.Module): def __init__(self, in_features: int, out_features: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.q_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.proj_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.lora_weights = lora_weights def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond=False, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `context` projections. inner_dim = 3072 head_dim = inner_dim // attn.heads encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # Linear projection (with LoRA weight applied to each proj layer) hidden_states = attn.to_out[0](hidden_states) for i in range(self.n_loras): hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return (hidden_states, encoder_hidden_states) class MultiSingleStreamBlockLoraProcessorWithLoss(nn.Module): def __init__(self, in_features: int, out_features: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.q_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.lora_weights = lora_weights def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond = False, ) -> torch.FloatTensor: batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) encoder_hidden_length = 512 length = (hidden_states.shape[-2] - encoder_hidden_length) // 3 for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # query_cond_a = query[:, :, encoder_hidden_length+length : encoder_hidden_length+2*length, :] # query_cond_b = query[:, :, encoder_hidden_length+2*length : encoder_hidden_length+3*length, :] # key_noise = key[:, :, encoder_hidden_length:encoder_hidden_length+length, :] # attention_probs_query_a_key_noise = scaled_dot_product_average_attention_map(query_cond_a, key_noise, attn_mask=attention_mask, is_causal=False) # attention_probs_query_b_key_noise = scaled_dot_product_average_attention_map(query_cond_b, key_noise, attn_mask=attention_mask, is_causal=False) # attn.attention_probs_query_a_key_noise = attention_probs_query_a_key_noise # attn.attention_probs_query_b_key_noise = attention_probs_query_b_key_noise hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) return hidden_states class MultiDoubleStreamBlockLoraProcessorWithLoss(nn.Module): def __init__(self, in_features: int, out_features: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.q_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.proj_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.lora_weights = lora_weights def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond=False, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `context` projections. inner_dim = 3072 head_dim = inner_dim // attn.heads encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) length = hidden_states.shape[-2] // 3 for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) encoder_hidden_length = 512 query_cond_a = query[:, :, encoder_hidden_length+length : encoder_hidden_length+2*length, :] query_cond_b = query[:, :, encoder_hidden_length+2*length : encoder_hidden_length+3*length, :] key_noise = key[:, :, encoder_hidden_length:encoder_hidden_length+length, :] attention_probs_query_a_key_noise = scaled_dot_product_average_attention_map(query_cond_a, key_noise, attn_mask=attention_mask, is_causal=False) attention_probs_query_b_key_noise = scaled_dot_product_average_attention_map(query_cond_b, key_noise, attn_mask=attention_mask, is_causal=False) attn.attention_probs_query_a_key_noise = attention_probs_query_a_key_noise attn.attention_probs_query_b_key_noise = attention_probs_query_b_key_noise hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # Linear projection (with LoRA weight applied to each proj layer) hidden_states = attn.to_out[0](hidden_states) for i in range(self.n_loras): hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return (hidden_states, encoder_hidden_states) class MultiDoubleStreamBlockLoraProcessor_visual(nn.Module): def __init__(self, in_features: int, out_features: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.q_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.proj_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i],network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.lora_weights = lora_weights def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond=False, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `context` projections. inner_dim = 3072 head_dim = inner_dim // attn.heads encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) length = hidden_states.shape[-2] // 3 for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) encoder_hidden_length = 512 query_cond_a = query[:, :, encoder_hidden_length+length : encoder_hidden_length+2*length, :] query_cond_b = query[:, :, encoder_hidden_length+2*length : encoder_hidden_length+3*length, :] key_noise = key[:, :, encoder_hidden_length:encoder_hidden_length+length, :] attention_probs_query_a_key_noise = scaled_dot_product_average_attention_map(query_cond_a, key_noise, attn_mask=attention_mask, is_causal=False) attention_probs_query_b_key_noise = scaled_dot_product_average_attention_map(query_cond_b, key_noise, attn_mask=attention_mask, is_causal=False) if not hasattr(attn, 'attention_probs_query_a_key_noise'): attn.attention_probs_query_a_key_noise = [] if not hasattr(attn, 'attention_probs_query_b_key_noise'): attn.attention_probs_query_b_key_noise = [] global global_timestep attn.attention_probs_query_a_key_noise.append((global_timestep//19, attention_probs_query_a_key_noise)) attn.attention_probs_query_b_key_noise.append((global_timestep//19, attention_probs_query_b_key_noise)) print(f"Global Timestep: {global_timestep//19}") global_timestep += 1 hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # Linear projection (with LoRA weight applied to each proj layer) hidden_states = attn.to_out[0](hidden_states) for i in range(self.n_loras): hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return (hidden_states, encoder_hidden_states) class MultiSingleStreamBlockLoraProcessor_visual(nn.Module): def __init__(self, in_features: int, out_features: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.q_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(in_features, out_features, ranks[i], network_alphas[i], device=device, dtype=dtype) for i in range(n_loras) ]) self.lora_weights = lora_weights def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond = False, ) -> torch.FloatTensor: batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) encoder_hidden_length = 512 length = (hidden_states.shape[-2] - encoder_hidden_length) // 3 for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if not hasattr(attn, 'attention_probs_query_a_key_noise2'): attn.attention_probs_query_a_key_noise2 = [] if not hasattr(attn, 'attention_probs_query_b_key_noise2'): attn.attention_probs_query_b_key_noise2 = [] query_cond_a = query[:, :, encoder_hidden_length+length : encoder_hidden_length+2*length, :] query_cond_b = query[:, :, encoder_hidden_length+2*length : encoder_hidden_length+3*length, :] key_noise = key[:, :, encoder_hidden_length:encoder_hidden_length+length, :] attention_probs_query_a_key_noise2 = scaled_dot_product_average_attention_map(query_cond_a, key_noise, attn_mask=attention_mask, is_causal=False) attention_probs_query_b_key_noise2 = scaled_dot_product_average_attention_map(query_cond_b, key_noise, attn_mask=attention_mask, is_causal=False) global global_timestep2 attn.attention_probs_query_a_key_noise2.append((global_timestep//38, attention_probs_query_a_key_noise2)) attn.attention_probs_query_b_key_noise2.append((global_timestep//38, attention_probs_query_b_key_noise2)) print(f"Global Timestep2: {global_timestep2//38}") global_timestep2 += 1 hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) return hidden_states