""" AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 Code: https://github.com/clovaai/AdamP Copyright (c) 2020-present NAVER Corp. MIT license """ import torch import torch.nn as nn from torch.optim.optimizer import Optimizer, required import math class AdamP(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, delta=delta, wd_ratio=wd_ratio, nesterov=nesterov) super(AdamP, self).__init__(params, defaults) def _channel_view(self, x): return x.view(x.size(0), -1) def _layer_view(self, x): return x.view(1, -1) def _cosine_similarity(self, x, y, eps, view_func): x = view_func(x) y = view_func(y) x_norm = x.norm(dim=1).add_(eps) y_norm = y.norm(dim=1).add_(eps) dot = (x * y).sum(dim=1) return dot.abs() / x_norm / y_norm def _projection(self, p, grad, perturb, delta, wd_ratio, eps): wd = 1 expand_size = [-1] + [1] * (len(p.shape) - 1) for view_func in [self._channel_view, self._layer_view]: cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func) if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)): p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps) perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size) wd = wd_ratio return perturb, wd return perturb, wd def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data beta1, beta2 = group['betas'] nesterov = group['nesterov'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) state['exp_avg_sq'] = torch.zeros_like(p.data) # Adam exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) step_size = group['lr'] / bias_correction1 if nesterov: perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom else: perturb = exp_avg / denom # Projection wd_ratio = 1 if len(p.shape) > 1: perturb, wd_ratio = self._projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps']) # Weight decay if group['weight_decay'] > 0: p.data.mul_(1 - group['lr'] * group['weight_decay'] * wd_ratio) # Step p.data.add_(-step_size, perturb) return loss