""" @author: @Date: 2021/07/17 @description: Use the feature extractor proposed by HorizonNet """ import numpy as np import math import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import functools from models.base_model import BaseModule ENCODER_RESNET = [ 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d' ] ENCODER_DENSENET = [ 'densenet121', 'densenet169', 'densenet161', 'densenet201' ] def lr_pad(x, padding=1): ''' Pad left/right-most to each other instead of zero padding ''' return torch.cat([x[..., -padding:], x, x[..., :padding]], dim=3) class LR_PAD(nn.Module): ''' Pad left/right-most to each other instead of zero padding ''' def __init__(self, padding=1): super(LR_PAD, self).__init__() self.padding = padding def forward(self, x): return lr_pad(x, self.padding) def wrap_lr_pad(net): for name, m in net.named_modules(): if not isinstance(m, nn.Conv2d): continue if m.padding[1] == 0: continue w_pad = int(m.padding[1]) m.padding = (m.padding[0], 0) # weight padding is 0, LR_PAD then use valid padding will keep dim of weight names = name.split('.') root = functools.reduce(lambda o, i: getattr(o, i), [net] + names[:-1]) setattr( root, names[-1], nn.Sequential(LR_PAD(w_pad), m) ) ''' Encoder ''' class Resnet(nn.Module): def __init__(self, backbone='resnet50', pretrained=True): super(Resnet, self).__init__() assert backbone in ENCODER_RESNET self.encoder = getattr(models, backbone)(pretrained=pretrained) del self.encoder.fc, self.encoder.avgpool def forward(self, x): features = [] x = self.encoder.conv1(x) x = self.encoder.bn1(x) x = self.encoder.relu(x) x = self.encoder.maxpool(x) x = self.encoder.layer1(x) features.append(x) # 1/4 x = self.encoder.layer2(x) features.append(x) # 1/8 x = self.encoder.layer3(x) features.append(x) # 1/16 x = self.encoder.layer4(x) features.append(x) # 1/32 return features def list_blocks(self): lst = [m for m in self.encoder.children()] block0 = lst[:4] block1 = lst[4:5] block2 = lst[5:6] block3 = lst[6:7] block4 = lst[7:8] return block0, block1, block2, block3, block4 class Densenet(nn.Module): def __init__(self, backbone='densenet169', pretrained=True): super(Densenet, self).__init__() assert backbone in ENCODER_DENSENET self.encoder = getattr(models, backbone)(pretrained=pretrained) self.final_relu = nn.ReLU(inplace=True) del self.encoder.classifier def forward(self, x): lst = [] for m in self.encoder.features.children(): x = m(x) lst.append(x) features = [lst[4], lst[6], lst[8], self.final_relu(lst[11])] return features def list_blocks(self): lst = [m for m in self.encoder.features.children()] block0 = lst[:4] block1 = lst[4:6] block2 = lst[6:8] block3 = lst[8:10] block4 = lst[10:] return block0, block1, block2, block3, block4 ''' Decoder ''' class ConvCompressH(nn.Module): ''' Reduce feature height by factor of two ''' def __init__(self, in_c, out_c, ks=3): super(ConvCompressH, self).__init__() assert ks % 2 == 1 self.layers = nn.Sequential( nn.Conv2d(in_c, out_c, kernel_size=ks, stride=(2, 1), padding=ks // 2), nn.BatchNorm2d(out_c), nn.ReLU(inplace=True), ) def forward(self, x): return self.layers(x) class GlobalHeightConv(nn.Module): def __init__(self, in_c, out_c): super(GlobalHeightConv, self).__init__() self.layer = nn.Sequential( ConvCompressH(in_c, in_c // 2), ConvCompressH(in_c // 2, in_c // 2), ConvCompressH(in_c // 2, in_c // 4), ConvCompressH(in_c // 4, out_c), ) def forward(self, x, out_w): x = self.layer(x) factor = out_w // x.shape[3] x = torch.cat([x[..., -1:], x, x[..., :1]], 3) # 先补左右,相当于warp模式,然后进行插值 d_type = x.dtype x = F.interpolate(x, size=(x.shape[2], out_w + 2 * factor), mode='bilinear', align_corners=False) # if x.dtype != d_type: # x = x.type(d_type) x = x[..., factor:-factor] return x class GlobalHeightStage(nn.Module): def __init__(self, c1, c2, c3, c4, out_scale=8): ''' Process 4 blocks from encoder to single multiscale features ''' super(GlobalHeightStage, self).__init__() self.cs = c1, c2, c3, c4 self.out_scale = out_scale self.ghc_lst = nn.ModuleList([ GlobalHeightConv(c1, c1 // out_scale), GlobalHeightConv(c2, c2 // out_scale), GlobalHeightConv(c3, c3 // out_scale), GlobalHeightConv(c4, c4 // out_scale), ]) def forward(self, conv_list, out_w): assert len(conv_list) == 4 bs = conv_list[0].shape[0] feature = torch.cat([ f(x, out_w).reshape(bs, -1, out_w) for f, x, out_c in zip(self.ghc_lst, conv_list, self.cs) ], dim=1) # conv_list: # 0 [b, 256(d), 128(h), 256(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 32(d) 8(h) 256(w)] # 1 [b, 512(d), 64(h), 128(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 64(d) 4(h) 128(w)] # 2 [b, 1024(d), 32(h), 64(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 128(d) 2(h) 64(w)] # 3 [b, 2048(d), 16(h), 32(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 256(d) 1(h) 32(w)] # 0 ->(unsampledW256} : w=256)-> [b 32(d) 8(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] # 1 ->(unsampledW256} : w=256)-> [b 64(d) 4(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] # 2 ->(unsampledW256} : w=256)-> [b 128(d) 2(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] # 3 ->(unsampledW256} : w=256)-> [b 256(d) 1(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] # 0 --\ # 1 -- \ # ---- cat [b 1024(d) 1(h) 256(w)] # 2 -- / # 3 --/ return feature # [b 1024(d) 256(w)] class HorizonNetFeatureExtractor(nn.Module): x_mean = torch.FloatTensor(np.array([0.485, 0.456, 0.406])[None, :, None, None]) x_std = torch.FloatTensor(np.array([0.229, 0.224, 0.225])[None, :, None, None]) def __init__(self, backbone='resnet50'): super(HorizonNetFeatureExtractor, self).__init__() self.out_scale = 8 self.step_cols = 4 # Encoder if backbone.startswith('res'): self.feature_extractor = Resnet(backbone, pretrained=True) elif backbone.startswith('dense'): self.feature_extractor = Densenet(backbone, pretrained=True) else: raise NotImplementedError() # Inference channels number from each block of the encoder with torch.no_grad(): dummy = torch.zeros(1, 3, 512, 1024) c1, c2, c3, c4 = [b.shape[1] for b in self.feature_extractor(dummy)] self.c_last = (c1 * 8 + c2 * 4 + c3 * 2 + c4 * 1) // self.out_scale # Convert features from 4 blocks of the encoder into B x C x 1 x W' self.reduce_height_module = GlobalHeightStage(c1, c2, c3, c4, self.out_scale) self.x_mean.requires_grad = False self.x_std.requires_grad = False wrap_lr_pad(self) def _prepare_x(self, x): x = x.clone() if self.x_mean.device != x.device: self.x_mean = self.x_mean.to(x.device) self.x_std = self.x_std.to(x.device) x[:, :3] = (x[:, :3] - self.x_mean) / self.x_std return x def forward(self, x): # x [b 3 512 1024] x = self._prepare_x(x) # [b 3 512 1024] conv_list = self.feature_extractor(x) # conv_list: # 0 [b, 256(d), 128(h), 256(w)] # 1 [b, 512(d), 64(h), 128(w)] # 2 [b, 1024(d), 32(h), 64(w)] # 3 [b, 2048(d), 16(h), 32(w)] x = self.reduce_height_module(conv_list, x.shape[3] // self.step_cols) # [b 1024(d) 1(h) 256(w)] # After reduce_Height_module, h becomes 1, the information is compressed to d, # and w contains different resolutions # 0 [b, 256(d), 128(h), 256(w)] -> [b, 256/8(d) * 128/16(h') = 256(d), 1(h) 256(w)] # 1 [b, 512(d), 64(h), 128(w)] -> [b, 512/8(d) * 64/16(h') = 256(d), 1(h) 256(w)] # 2 [b, 1024(d), 32(h), 64(w)] -> [b, 1024/8(d) * 32/16(h') = 256(d), 1(h) 256(w)] # 3 [b, 2048(d), 16(h), 32(w)] -> [b, 2048/8(d) * 16/16(h') = 256(d), 1(h) 256(w)] return x # [b 1024(d) 1(h) 256(w)] if __name__ == '__main__': from PIL import Image extractor = HorizonNetFeatureExtractor() img = np.array(Image.open("../../src/demo.png")).transpose((2, 0, 1)) input = torch.Tensor([img]) # 1 3 512 1024 feature = extractor(input) print(feature.shape) # 1, 1024, 256 | 1024 = (out_c_0*h_0 +... + out_c_3*h_3) = 256 * 4