import express from 'express'; import { fal } from '@fal-ai/client'; const app = express(); app.use(express.json({ limit: '50mb' })); app.use(express.urlencoded({ extended: true, limit: '50mb' })); const PORT = process.env.PORT || 3000; // === 全局定义限制 === const PROMPT_LIMIT = 4800; const SYSTEM_PROMPT_LIMIT = 4800; // === 限制定义结束 === // 定义 fal-ai/any-llm 支持的模型列表 const FAL_SUPPORTED_MODELS = [ "anthropic/claude-3.7-sonnet", "anthropic/claude-3.5-sonnet", "anthropic/claude-3-5-haiku", "anthropic/claude-3-haiku", "google/gemini-pro-1.5", "google/gemini-flash-1.5", "google/gemini-flash-1.5-8b", "google/gemini-2.0-flash-001", "meta-llama/llama-3.2-1b-instruct", "meta-llama/llama-3.2-3b-instruct", "meta-llama/llama-3.1-8b-instruct", "meta-llama/llama-3.1-70b-instruct", "openai/gpt-4o-mini", "openai/gpt-4o", "deepseek/deepseek-r1", "meta-llama/llama-4-maverick", "meta-llama/llama-4-scout" ]; // Helper function to get owner from model ID const getOwner = (modelId) => { if (modelId && modelId.includes('/')) { return modelId.split('/')[0]; } return 'fal-ai'; } // GET /v1/models endpoint app.get('/v1/models', (req, res) => { console.log("Received request for GET /v1/models"); try { const modelsData = FAL_SUPPORTED_MODELS.map(modelId => ({ id: modelId, object: "model", created: 1700000000, owned_by: getOwner(modelId) })); res.json({ object: "list", data: modelsData }); console.log("Successfully returned model list."); } catch (error) { console.error("Error processing GET /v1/models:", error); res.status(500).json({ error: "Failed to retrieve model list." }); } }); /** * 将 OpenAI 格式的消息转换为 Fal AI 格式的 prompt 和 system_prompt * * 核心逻辑:倒序遍历 messages,至多取 3 条 user/assistant 消息放到 prompt 部分, * chat_history 最多包含 2 条消息(user + assistant),最后一个用户消息是最新提问,不属于对话历史 * * @param messages - OpenAI 格式的消息数组 * @returns 包含 system_prompt、prompt 和可选错误信息的对象 * * @example * // 基本用法:系统消息 + 用户消息 * const messages = [ * { role: 'system', content: 'You are a helpful assistant.' }, * { role: 'user', content: 'Hello, how are you?' } * ]; * const result = convertMessagesToFalPrompt(messages); * // result.system_prompt: 'You are a helpful assistant.' * // result.prompt: 'Hello, how are you?' * * @example * // 多轮对话:最后一条是用户消息 * const messages = [ * { role: 'system', content: 'You are helpful.' }, * { role: 'user', content: 'What is AI?' }, * { role: 'assistant', content: 'AI is artificial intelligence.' }, * { role: 'user', content: 'Tell me more.' } * ]; * const result = convertMessagesToFalPrompt(messages); * // result.system_prompt: 'You are helpful.\n' * // result.prompt: 'What is AI?\nAssistant: AI is artificial intelligence.\n\nTell me more.' * * @example * // 多轮对话:最后一条不是用户消息 * const messages = [ * { role: 'user', content: 'Hello' }, * { role: 'assistant', content: 'Hi there!' } * ]; * const result = convertMessagesToFalPrompt(messages); * // result.system_prompt: '\nHuman: Hello\nAssistant: Hi there!\n' * // result.prompt: '' * * @description * 实现逻辑: * 1. **系统消息处理**:只使用最后一个非空系统消息,如果超出 SYSTEM_PROMPT_LIMIT 则返回错误 * 2. **消息过滤**:自动过滤空内容消息(null、undefined、空字符串或纯空格) * 3. **倒序遍历**:取最后 3 条消息,根据最后一条消息类型分两种情况: * * **情况 A - 最后一条是用户消息**: * - 取倒数第 3、第 2 条作为 chat_history(最多 2 条:user + assistant) * - system_prompt: `系统消息\n` * - prompt: `\nAssistant: \n\n<最新用户消息>` * * **情况 B - 最后一条不是用户消息**: * - 取最后 2 条消息作为 chat_history,放在 system_prompt 中 * - system_prompt: `系统消息\n\nHuman: \nAssistant: \n` * - prompt: `""`(空字符串) * * 4. **格式约定**: * - prompt 中会自动拼接 Human 消息,所以 user 消息不需要 "Human:" 前缀 * - system_prompt 中的 user 消息需要 "Human:" 前缀 * - assistant 消息始终使用 "Assistant:" 前缀 * * @note * - 字符限制:系统消息长度不能超过 SYSTEM_PROMPT_LIMIT (4800) 字符 * - 消息数量:最多处理最近的 3 条对话消息(倒数第 1、2、3 条) * - 历史限制:chat_history 最多包含 2 条消息,避免 prompt 过长 * - 错误处理:系统消息超限时返回错误,其他情况尽力处理 */ function convertMessagesToFalPrompt(messages) { // 第一步:过滤空内容消息,分离系统消息和对话消息 const filtered_messages = []; let system_message_content = ""; for (const message of messages) { const content = (message.content === null || message.content === undefined) ? "" : String(message.content).trim(); if (content.length > 0) { if (message.role === 'system') { system_message_content = content; // 只保留最后一个非空系统消息 } else { filtered_messages.push({ ...message, content: content }); } } } // 检查系统消息长度限制 if (system_message_content.length > SYSTEM_PROMPT_LIMIT) { system_message_content = system_message_content.substring(0,SYSTEM_PROMPT_LIMIT) } // 如果没有对话消息,直接返回 if (filtered_messages.length === 0) { return { system_prompt: system_message_content, prompt: "" }; } // 第二步:倒序遍历messages,至多取3条user/assistant消息放到prompt部分 const prompt_messages = filtered_messages.slice(-3); // 取最后3条消息 const remaining_messages = filtered_messages.slice(0, -3); // 剩余的消息 // 第三步:构建prompt部分 let prompt_parts = []; for (const message of prompt_messages) { if (message.role === 'user') { prompt_parts.push(String(message.content)); } else if (message.role === 'assistant') { prompt_parts.push(`Assistant: ${String(message.content)}`); } } const final_prompt = prompt_parts.join('\n'); // 第四步:构建system_prompt部分 let system_prompt_parts = []; // 添加系统消息(如果存在) if (system_message_content.length > 0) { system_prompt_parts.push(system_message_content); } // 添加剩余的对话消息 for (const message of remaining_messages) { if (message.role === 'user') { system_prompt_parts.push(`Human: ${String(message.content)}`); } else if (message.role === 'assistant') { system_prompt_parts.push(`Assistant: ${String(message.content)}`); } } let final_system_prompt = system_prompt_parts.join('\n'); // 第五步:检查system_prompt字符限制并截断 if (final_system_prompt.length > SYSTEM_PROMPT_LIMIT) { // 优先保留系统消息,然后从最新的对话开始截断 const system_part = system_message_content; let remaining_space = SYSTEM_PROMPT_LIMIT - system_part.length - 1; // -1 for newline if (remaining_space <= 0) { final_system_prompt = system_part; } else { const conversation_parts = []; // 倒序添加剩余对话,确保不超过字符限制 for (let i = remaining_messages.length - 1; i >= 0; i--) { const message = remaining_messages[i]; let message_text = ""; if (message.role === 'user') { message_text = `Human: ${String(message.content)}`; } else if (message.role === 'assistant') { message_text = `Assistant: ${String(message.content)}`; } if (message_text.length + 1 <= remaining_space) { // +1 for newline conversation_parts.unshift(message_text); remaining_space -= (message_text.length + 1); } else { break; // 无法添加更多消息 } } if (system_part.length > 0 && conversation_parts.length > 0) { final_system_prompt = system_part + '\n' + conversation_parts.join('\n'); } else if (system_part.length > 0) { final_system_prompt = system_part; } else { final_system_prompt = conversation_parts.join('\n'); } } } return { system_prompt: final_system_prompt, prompt: final_prompt }; } function convertMessagesToFalPrompt1(messages) { let system_message_content = ""; let prompt =""; for (const message of messages) { const content = (message.content === null || message.content === undefined) ? "" : String(message.content).trim(); if (content.length > 0) { if (message.role === 'system') { system_message_content = content; // 只保留最后一个非空系统消息 } else if (message.role === 'user') { prompt = content; } } } return { system_prompt: system_message_content, prompt: prompt }; } // POST /v1/chat/completions endpoint (保持不变) app.post('/v1/chat/completions', async (req, res) => { let authKey = null; let authHeader = req.headers.authorization; if(!authHeader) { authHeader = req.headers["x-app-token"]; } if (authHeader) { const parts = authHeader.split(' '); if (parts.length === 2) { const scheme = parts[0]; const credentials = parts[1]; if (scheme === 'Bearer') { authKey = credentials; // JWT 或其他 token } else if (scheme === 'Basic') { // Basic 认证解码 const decoded = Buffer.from(credentials, 'base64').toString('utf8'); const [username, password] = decoded.split(':'); req.auth = { username, password }; authKey = decoded; // 或者只保存 username } else if (scheme === 'ApiKey' || scheme === 'Key') { authKey = credentials; } } } fal.config({ credentials: authKey, }); const { model, messages, stream = false, reasoning = false, ...restOpenAIParams } = req.body; console.log(`Received chat completion request for model: ${model}, stream: ${stream}`); if (!FAL_SUPPORTED_MODELS.includes(model)) { console.warn(`Warning: Requested model '${model}' is not in the explicitly supported list.`); } if (!model || !messages || !Array.isArray(messages) || messages.length === 0) { console.error("Invalid request parameters:", { model, messages: Array.isArray(messages) ? messages.length : typeof messages }); return res.status(400).json({ error: 'Missing or invalid parameters: model and messages array are required.' }); } try { // *** 使用更新后的转换函数 *** const { prompt, system_prompt } = convertMessagesToFalPrompt1(messages); const falInput = { model: model, prompt: prompt, ...(system_prompt && { system_prompt: system_prompt }), reasoning: !!reasoning, }; console.log("Fal Input:", JSON.stringify(falInput, null, 2)); console.log("Forwarding request to fal-ai with system-priority + separator + recency input:"); console.log("System Prompt Length:", system_prompt?.length || 0); console.log("Prompt Length:", prompt?.length || 0); // 调试时取消注释可以查看具体内容 console.log("--- System Prompt Start ---"); console.log(system_prompt); console.log("--- System Prompt End ---"); console.log("--- Prompt Start ---"); console.log(prompt); console.log("--- Prompt End ---"); // --- 流式/非流式处理逻辑 (保持不变) --- if (stream) { // ... 流式代码 ... res.setHeader('Content-Type', 'text/event-stream; charset=utf-8'); res.setHeader('Cache-Control', 'no-cache'); res.setHeader('Connection', 'keep-alive'); res.setHeader('Access-Control-Allow-Origin', '*'); res.flushHeaders(); let previousOutput = ''; const falStream = await fal.stream("fal-ai/any-llm", { input: falInput }); try { for await (const event of falStream) { const currentOutput = (event && typeof event.output === 'string') ? event.output : ''; const isPartial = (event && typeof event.partial === 'boolean') ? event.partial : true; const errorInfo = (event && event.error) ? event.error : null; if (errorInfo) { console.error("Error received in fal stream event:", errorInfo); const errorChunk = { id: `chatcmpl-${Date.now()}-error`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: {}, finish_reason: "error", message: { role: 'assistant', content: `Fal Stream Error: ${JSON.stringify(errorInfo)}` } }] }; res.write(`data: ${JSON.stringify(errorChunk)}\n\n`); break; } let deltaContent = ''; if (currentOutput.startsWith(previousOutput)) { deltaContent = currentOutput.substring(previousOutput.length); } else if (currentOutput.length > 0) { console.warn("Fal stream output mismatch detected. Sending full current output as delta.", { previousLength: previousOutput.length, currentLength: currentOutput.length }); deltaContent = currentOutput; previousOutput = ''; } previousOutput = currentOutput; if (deltaContent || !isPartial) { const openAIChunk = { id: `chatcmpl-${Date.now()}`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: { content: deltaContent }, finish_reason: isPartial === false ? "stop" : null }] }; res.write(`data: ${JSON.stringify(openAIChunk)}\n\n`); } } res.write(`data: [DONE]\n\n`); res.end(); console.log("Stream finished."); } catch (streamError) { console.error('Error during fal stream processing loop:', streamError); try { const errorDetails = (streamError instanceof Error) ? streamError.message : JSON.stringify(streamError); res.write(`data: ${JSON.stringify({ error: { message: "Stream processing error", type: "proxy_error", details: errorDetails } })}\n\n`); res.write(`data: [DONE]\n\n`); res.end(); } catch (finalError) { console.error('Error sending stream error message to client:', finalError); if (!res.writableEnded) { res.end(); } } } } else { // --- 非流式处理 (保持不变) --- console.log("Executing non-stream request..."); const result = await fal.subscribe("fal-ai/any-llm", { input: falInput, logs: true }); console.log("Received non-stream result from fal-ai:", JSON.stringify(result, null, 2)); if (result && result.error) { console.error("Fal-ai returned an error in non-stream mode:", result.error); return res.status(500).json({ object: "error", message: `Fal-ai error: ${JSON.stringify(result.error)}`, type: "fal_ai_error", param: null, code: null }); } const openAIResponse = { id: `chatcmpl-${result.requestId || Date.now()}`, object: "chat.completion", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, message: { role: "assistant", content: result.output || "" }, finish_reason: "stop" }], usage: { prompt_tokens: null, completion_tokens: null, total_tokens: null }, system_fingerprint: null, ...(result.reasoning && { fal_reasoning: result.reasoning }), }; res.json(openAIResponse); console.log("Returned non-stream response."); } } catch (error) { console.error('Unhandled error in /v1/chat/completions:', error); if (!res.headersSent) { const errorMessage = (error instanceof Error) ? error.message : JSON.stringify(error); res.status(500).json({ error: 'Internal Server Error in Proxy', details: errorMessage }); } else if (!res.writableEnded) { console.error("Headers already sent, ending response."); res.end(); } } }); // 启动服务器 (更新启动信息) app.listen(PORT, () => { console.log(`===================================================`); console.log(` Fal OpenAI Proxy Server (System Top + Separator + Recency)`); // 更新策略名称 console.log(` Listening on port: ${PORT}`); console.log(` Using Limits: System Prompt=${SYSTEM_PROMPT_LIMIT}, Prompt=${PROMPT_LIMIT}`); console.log(` Chat Completions Endpoint: POST http://localhost:${PORT}/v1/chat/completions`); console.log(` Models Endpoint: GET http://localhost:${PORT}/v1/models`); console.log(`===================================================`); }); // 根路径响应 (更新信息) app.get('/', (req, res) => { res.send('Fal OpenAI Proxy (System Top + Separator + Recency Strategy) is running.'); });