"""Use a single chain to route an input to one of multiple retrieval qa chains.""" from __future__ import annotations from typing import Any, Dict, List, Mapping, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate from langchain_core.retrievers import BaseRetriever from langchain.chains import ConversationChain from langchain.chains.base import Chain from langchain.chains.conversation.prompt import DEFAULT_TEMPLATE from langchain.chains.retrieval_qa.base import BaseRetrievalQA, RetrievalQA from langchain.chains.router.base import MultiRouteChain from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser from langchain.chains.router.multi_retrieval_prompt import ( MULTI_RETRIEVAL_ROUTER_TEMPLATE, ) from langchain.chat_models import ChatOpenAI class MultiRetrievalQAChain(MultiRouteChain): """A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains.""" router_chain: LLMRouterChain """Chain for deciding a destination chain and the input to it.""" destination_chains: Mapping[str, BaseRetrievalQA] """Map of name to candidate chains that inputs can be routed to.""" default_chain: Chain """Default chain to use when router doesn't map input to one of the destinations.""" @property def output_keys(self) -> List[str]: return ["result"] @classmethod def from_retrievers( cls, llm: BaseLanguageModel, retriever_infos: List[Dict[str, Any]], default_retriever: Optional[BaseRetriever] = None, default_prompt: Optional[PromptTemplate] = None, default_chain: Optional[Chain] = None, **kwargs: Any, ) -> MultiRetrievalQAChain: if default_prompt and not default_retriever: raise ValueError( "`default_retriever` must be specified if `default_prompt` is " "provided. Received only `default_prompt`." ) destinations = [f"{r['name']}: {r['description']}" for r in retriever_infos] destinations_str = "\n".join(destinations) router_template = MULTI_RETRIEVAL_ROUTER_TEMPLATE.format( destinations=destinations_str ) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(next_inputs_inner_key="query"), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) destination_chains = {} for r_info in retriever_infos: prompt = r_info.get("prompt") retriever = r_info["retriever"] chain = RetrievalQA.from_llm(llm, prompt=prompt, retriever=retriever) name = r_info["name"] destination_chains[name] = chain if default_chain: _default_chain = default_chain elif default_retriever: _default_chain = RetrievalQA.from_llm( llm, prompt=default_prompt, retriever=default_retriever ) else: prompt_template = DEFAULT_TEMPLATE.replace("input", "query") prompt = PromptTemplate( template=prompt_template, input_variables=["history", "query"] ) _default_chain = ConversationChain( llm=ChatOpenAI(), prompt=prompt, input_key="query", output_key="result" ) return cls( router_chain=router_chain, destination_chains=destination_chains, default_chain=_default_chain, **kwargs, )