"""Use a single chain to route an input to one of multiple llm chains.""" from __future__ import annotations from typing import Any, Dict, List, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate from langchain.chains import ConversationChain from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.router.base import MultiRouteChain from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE class MultiPromptChain(MultiRouteChain): """A multi-route chain that uses an LLM router chain to choose amongst prompts.""" @property def output_keys(self) -> List[str]: return ["text"] @classmethod def from_prompts( cls, llm: BaseLanguageModel, prompt_infos: List[Dict[str, str]], default_chain: Optional[Chain] = None, **kwargs: Any, ) -> MultiPromptChain: """Convenience constructor for instantiating from destination prompts.""" destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos] destinations_str = "\n".join(destinations) router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format( destinations=destinations_str ) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) destination_chains = {} for p_info in prompt_infos: name = p_info["name"] prompt_template = p_info["prompt_template"] prompt = PromptTemplate(template=prompt_template, input_variables=["input"]) chain = LLMChain(llm=llm, prompt=prompt) destination_chains[name] = chain _default_chain = default_chain or ConversationChain(llm=llm, output_key="text") return cls( router_chain=router_chain, destination_chains=destination_chains, default_chain=_default_chain, **kwargs, )