import openai import tiktoken import datetime import json import os openai.api_key = os.getenv('API_KEY') openai.request_times = 0 def ask(question, history, behavior): openai.request_times += 1 print(f"request times {openai.request_times}: {datetime.datetime.now()}: {question}") try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=forget_long_term( [ {"role":"system", "content":content} for content in behavior ] + [ {"role":"user" if i%2==0 else "assistant", "content":content} for i,content in enumerate(history + [question]) ] ) )["choices"][0]["message"]["content"] while response.startswith("\n"): response = response[1:] except Exception as e: print(e) response = 'Timeout! Please wait a few minutes and retry' history = history + [question, response] return history def num_tokens_from_messages(messages, model="gpt-3.5-turbo"): """Returns the number of tokens used by a list of messages.""" try: encoding = tiktoken.encoding_for_model(model) except KeyError: encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo": # note: future models may deviate from this num_tokens = 0 for message in messages: num_tokens += 4 # every message follows {role/name}\n{content}\n for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": # if there's a name, the role is omitted num_tokens += -1 # role is always required and always 1 token num_tokens += 2 # every reply is primed with assistant return num_tokens else: raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") def forget_long_term(messages, max_num_tokens=4000): while num_tokens_from_messages(messages)>max_num_tokens: if messages[0]["role"]=="system" and not len(messages[0]["content"]>=max_num_tokens): messages = messages[:1] + messages[2:] else: messages = messages[1:] return messages import gradio as gr def to_md(content): is_inside_code_block = False output_spans = [] for i in range(len(content)): if content[i]=="\n" and not is_inside_code_block: if len(output_spans)>0 and output_spans[-1]=="\n```\n": pass else: output_spans.append("
") elif content[i]=="`": output_spans.append(content[i]) if len(output_spans)>=3 and all([output_spans[j]=="`" for j in [-3,-2,-1]]): is_inside_code_block = not is_inside_code_block output_spans = output_spans[:-3] if not output_spans[-1]=="\n": output_spans.append("\n") output_spans.append("\n```\n") else: output_spans.append(content[i]) return "".join(output_spans) def predict(question, history=[], behavior=[]): history = ask(question, history, behavior) response = [(to_md(history[i]),to_md(history[i+1])) for i in range(0,len(history)-1,2)] return "", history, response with gr.Blocks() as demo: examples_txt = [ ['200字介绍一下凯旋门:'], ['网上购物有什么小窍门?'], ['补全下述对三亚的介绍:\n三亚位于海南岛的最南端,是'], ['将这句文言文翻译成英语:"逝者如斯夫,不舍昼夜。"'], ['Question: What\'s the best winter resort city? User: A 10-year professional traveler. Answer: '], ['How to help my child to make friends with his classmates? answer this question step by step:'], ['polish the following statement for a paper: In this section, we perform case study to give a more intuitive demonstration of our proposed strategies and corresponding explanation.'], ] examples_bhv = [ "你现在是一个带有批判思维的导游,会对景点的优缺点进行中肯的分析。", "你现在是一名佛教信仰者,但同时又对世界上其它的宗教和文化保持着包容、尊重和交流的态度。", f"You are a helpful assistant. You will answer all the questions step-by-step.", f"You are a helpful assistant. Today is {datetime.date.today()}.", ] gr.Markdown( """ 朋友你好, 这是我利用[gradio](https://gradio.app/creating-a-chatbot/)编写的一个小网页,用于以网页的形式给大家分享ChatGPT请求服务,希望你玩的开心。关于使用技巧或学术研讨,欢迎在[Community](https://huggingface.co/spaces/zhangjf/chatbot/discussions)中和我交流。 p.s. 响应时间和聊天内容长度正相关,一般能在5秒~30秒内响应。 """) behavior = gr.State([]) with gr.Column(variant="panel"): with gr.Row().style(equal_height=True): with gr.Column(scale=0.85): bhv = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT扮演的人设").style(container=False) with gr.Column(scale=0.15, min_width=0): button_set = gr.Button("Set") bhv.submit(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior]) button_set.click(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior]) state = gr.State([]) with gr.Column(variant="panel"): chatbot = gr.Chatbot() txt = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT回答的问题").style(container=False) with gr.Row(): button_gen = gr.Button("Submit") button_clr = gr.Button("Clear") gr.Examples(examples=examples_bhv, inputs=bhv, label="Examples for setting behavior") gr.Examples(examples=examples_txt, inputs=txt, label="Examples for asking question") txt.submit(predict, [txt, state, behavior], [txt, state, chatbot]) button_gen.click(fn=predict, inputs=[txt, state, behavior], outputs=[txt, state, chatbot]) button_clr.click(fn=lambda :([],[]), inputs=None, outputs=[chatbot, state]) demo.launch()