import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.memory import ChatMemoryBuffer from llama_index.core import Settings import os import base64 import datetime # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3900, token=os.getenv("HF_TOKEN"), max_new_tokens=1024, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-en-v1.5" ) # Declare directory's for data and persistent storage PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Here, a memory token limit of 1500 is set memory = ChatMemoryBuffer.from_defaults(token_limit=1500) def displayPDF(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q&A assistant. Created by Abraham Paul [linkedin](https://www.linkedin.com/in/abraham-paul-16317a235/) a Software / AI Engineer. Your primary objective is to provide accurate and helpful answers based on the instructions and context provided. If a question falls outside the given context or scope, kindly guide the user to ask questions that align with the provided context. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # query_engine = index.as_query_engine(text_qa_template=text_qa_template, memory=memory) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." # Streamlit app initialization st.title("Get insights from your data!👇") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Upload your pdf doc and ask me anything about it, Lets chat!!'}] with st.sidebar: st.markdown("# Chat with your Doc") st.markdown("**Created by [Abraham](https://www.linkedin.com/in/abraham-paul-16317a235/)**") st.title(':blue[Get Started]:') uploaded_file = st.file_uploader("Upload your PDF and Click Submit") if st.button("Submit"): with st.spinner("Processing..."): filepath = "data/saved_pdf.pdf" with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) data_ingestion() # Process PDF every time new file is uploaded st.success("Done") user_prompt = st.chat_input("Ask me anything from the uploaded document:") if user_prompt: st.session_state.messages.append({'role': 'user', "content": user_prompt}) response = handle_query(user_prompt) st.session_state.messages.append({'role': 'assistant', "content": response}) for message in st.session_state.messages: with st.chat_message(message['role']): st.write(message['content'])