from typing import Union import gradio as gr import fire import os import yaml from llama_lora.config import Config, process_config from llama_lora.globals import initialize_global from llama_lora.models import prepare_base_model from llama_lora.utils.data import init_data_dir from llama_lora.ui.main_page import ( main_page, get_page_title, main_page_custom_css ) def main( base_model: Union[str, None] = None, data_dir: Union[str, None] = None, base_model_choices: Union[str, None] = None, trust_remote_code: Union[bool, None] = None, server_name: str = "127.0.0.1", share: bool = False, skip_loading_base_model: bool = False, load_8bit: Union[bool, None] = None, ui_show_sys_info: Union[bool, None] = None, ui_dev_mode: Union[bool, None] = None, wandb_api_key: Union[str, None] = None, wandb_project: Union[str, None] = None, ): ''' Start the LLaMA-LoRA Tuner UI. :param base_model: (required) The name of the default base model to use. :param data_dir: (required) The path to the directory to store data. :param base_model_choices: Base model selections to display on the UI, seperated by ",". For example: 'decapoda-research/llama-7b-hf,nomic-ai/gpt4all-j'. :param server_name: Allows to listen on all interfaces by providing '0.0.0.0'. :param share: Create a public Gradio URL. :param wandb_api_key: The API key for Weights & Biases. Setting either this or `wandb_project` will enable Weights & Biases. :param wandb_project: The default project name for Weights & Biases. Setting either this or `wandb_api_key` will enable Weights & Biases. ''' config_from_file = read_yaml_config() if config_from_file: for key, value in config_from_file.items(): if key == "server_name": server_name = value continue if not hasattr(Config, key): available_keys = [k for k in vars(Config) if not k.startswith('__')] raise ValueError(f"Invalid config key '{key}' in config.yaml. Available keys: {', '.join(available_keys)}") setattr(Config, key, value) if base_model is not None: Config.default_base_model_name = base_model if base_model_choices is not None: Config.base_model_choices = base_model_choices if trust_remote_code is not None: Config.trust_remote_code = trust_remote_code if data_dir is not None: Config.data_dir = data_dir if load_8bit is not None: Config.load_8bit = load_8bit if wandb_api_key is not None: Config.wandb_api_key = wandb_api_key if wandb_project is not None: Config.default_wandb_project = wandb_project if ui_dev_mode is not None: Config.ui_dev_mode = ui_dev_mode if ui_show_sys_info is not None: Config.ui_show_sys_info = ui_show_sys_info process_config() initialize_global() assert ( Config.default_base_model_name ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'" assert ( Config.data_dir ), "Please specify a --data_dir, e.g. --data_dir='./data'" init_data_dir() if (not skip_loading_base_model) and (not Config.ui_dev_mode): prepare_base_model(Config.default_base_model_name) with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo: main_page() demo.queue(concurrency_count=1).launch( server_name=server_name, share=share) def read_yaml_config(): app_dir = os.path.dirname(os.path.abspath(__file__)) config_path = os.path.join(app_dir, 'config.yaml') if not os.path.exists(config_path): return None print(f"Loading config from {config_path}...") with open(config_path, 'r') as yaml_file: config = yaml.safe_load(yaml_file) return config if __name__ == "__main__": fire.Fire(main)