Spaces:
Runtime error
Runtime error
| """ | |
| """ | |
| # Upgrade PyTorch | |
| import os | |
| os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
| # Actual app.py | |
| import os | |
| from datetime import datetime | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import FluxPipeline | |
| from torchao.quantization import quantize_ | |
| from torchao.quantization import Float8DynamicActivationFloat8WeightConfig | |
| from zerogpu import aoti_compile | |
| pipeline = FluxPipeline.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda') | |
| def compile_transformer(): | |
| pipeline.transformer.fuse_qkv_projections() | |
| pipeline.vae.fuse_qkv_projections() | |
| pipeline.vae.to(memory_format=torch.channels_last) | |
| quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
| def _example_tensor(*shape): | |
| return torch.randn(*shape, device='cuda', dtype=torch.bfloat16) | |
| is_timestep_distilled = not pipeline.transformer.config.guidance_embeds | |
| seq_length = 256 if is_timestep_distilled else 512 | |
| transformer_kwargs = { | |
| 'hidden_states': _example_tensor(1, 4096, 64), | |
| 'timestep': torch.tensor([1.], device='cuda', dtype=torch.bfloat16), | |
| 'guidance': None if is_timestep_distilled else torch.tensor([1.], device='cuda', dtype=torch.bfloat16), | |
| 'pooled_projections': _example_tensor(1, 768), | |
| 'encoder_hidden_states': _example_tensor(1, seq_length, 4096), | |
| 'txt_ids': _example_tensor(seq_length, 3), | |
| 'img_ids': _example_tensor(4096, 3), | |
| 'joint_attention_kwargs': {}, | |
| 'return_dict': False, | |
| } | |
| inductor_configs = { | |
| 'conv_1x1_as_mm': True, | |
| 'epilogue_fusion': False, | |
| 'coordinate_descent_tuning': True, | |
| 'coordinate_descent_check_all_directions': True, | |
| 'max_autotune': True, | |
| 'triton.cudagraphs': True, | |
| } | |
| exported = torch.export.export(pipeline.transformer, args=(), kwargs=transformer_kwargs) | |
| return aoti_compile(exported, inductor_configs) | |
| transformer_config = pipeline.transformer.config | |
| pipeline.transformer = compile_transformer() | |
| pipeline.transformer.config = transformer_config | |
| def generate_image(prompt: str, progress=gr.Progress(track_tqdm=True)): | |
| t0 = datetime.now() | |
| images = [] | |
| for _ in range(4): | |
| image = pipeline(prompt, num_inference_steps=4).images[0] | |
| elapsed = -(t0 - (t0 := datetime.now())) | |
| images += [(image, f'{elapsed.total_seconds():.2f}s')] | |
| yield images | |
| gr.Interface(generate_image, gr.Text(), gr.Gallery(rows=3, columns=3, height='60vh')).launch() | |