import gradio as gr from fetch import get_values from dotenv import load_dotenv load_dotenv() import prodia import requests import random from datetime import datetime import os prodia_key = os.getenv('PRODIA_X_KEY', None) if prodia_key is None: print("Please set PRODIA_X_KEY in .env, closing...") exit() client = prodia.Client(api_key=prodia_key) def process_input_text2img(prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, aspect_ratio, upscale, save): images = [] for image in range(number): result = client.txt2img(prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler, steps=steps, cfg_scale=cfg_scale, seed=seed, aspect_ratio=aspect_ratio, upscale=upscale) images.append(result.url) if save: date = datetime.now() if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'): os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}') img_data = requests.get(result.url).content with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f: f.write(img_data) return images def process_input_img2img(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, ds, upscale, save): images = [] for image in range(number): result = client.img2img(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler, steps=steps, cfg_scale=cfg_scale, seed=seed, denoising_strength=ds, upscale=upscale) images.append(result.url) if save: date = datetime.now() if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'): os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}') img_data = requests.get(result.url).content with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f: f.write(img_data) return images """ def process_input_control(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, control_model, sampler): images = [] for image in range(number): result = client.controlnet(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler, steps=steps, cfg_scale=cfg_scale, seed=seed, controlnet_model=control_model) images.append(result.url) return images """ with gr.Blocks() as demo: gr.Markdown(""" # Prodia API web-ui by @zenafey This is simple web-gui for using Prodia API easily, build on Python, gradio, prodiapy """) with gr.Tab(label="text2img"): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", lines=2) negative = gr.Textbox(label="Negative Prompt", lines=3, placeholder="badly drawn") with gr.Row(): steps = gr.Slider(label="Steps", value=30, step=1, maximum=50, minimum=1, interactive=True) cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True) with gr.Row(): num = gr.Slider(label="Number of images", value=1, step=1, minimum=1, interactive=True) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967295, interactive=True) with gr.Row(): model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True) sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DDIM", interactive=True) with gr.Row(): ar = gr.Radio(label="Aspect Ratio", choices=["square", "portrait", "landscape"], value="square", interactive=True) with gr.Column(): upscale = gr.Checkbox(label="upscale", interactive=True) save = gr.Checkbox(label="auto save", interactive=True) with gr.Row(): run_btn = gr.Button("Run", variant="primary") with gr.Column(): result_image = gr.Gallery(label="Result Image(s)") run_btn.click( process_input_text2img, inputs=[ prompt, negative, steps, cfg, num, seed, model, sampler, ar, upscale, save ], outputs=[result_image], ) with gr.Tab(label="img2img"): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", lines=2) with gr.Row(): negative = gr.Textbox(label="Negative Prompt", lines=3, placeholder="badly drawn") init_image = gr.Textbox(label="Init Image Url", lines=2, placeholder="https://cdn.openai.com/API/images/guides/image_generation_simple.webp") with gr.Row(): steps = gr.Slider(label="Steps", value=30, step=1, maximum=50, minimum=1, interactive=True) cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True) with gr.Row(): num = gr.Slider(label="Number of images", value=1, step=1, minimum=1, interactive=True) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967295, interactive=True) with gr.Row(): model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True) sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DDIM", interactive=True) with gr.Row(): ds = gr.Slider(label="Denoising strength", maximum=0.9, minimum=0.1, value=0.5, interactive=True) with gr.Column(): upscale = gr.Checkbox(label="upscale", interactive=True) save = gr.Checkbox(label="auto save", interactive=True) with gr.Row(): run_btn = gr.Button("Run", variant="primary") with gr.Column(): result_image = gr.Gallery(label="Result Image(s)") run_btn.click( process_input_img2img, inputs=[ init_image, prompt, negative, steps, cfg, num, seed, model, sampler, ds, upscale, save ], outputs=[result_image], ) with gr.Tab(label="controlnet(coming soon)"): gr.Button(label="lol") if __name__ == "__main__": demo.launch(show_api=True)