// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. #include "cpu/vision.h" template std::pair soft_nms_cpu_kernel(const at::Tensor& dets, const at::Tensor& scores, const float threshold, const float sigma) { AT_ASSERTM(!dets.device().is_cuda(), "dets must be a CPU tensor"); AT_ASSERTM(!scores.device().is_cuda(), "scores must be a CPU tensor"); AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores"); if (dets.numel() == 0) { return std::make_pair(at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU)), at::empty({0}, scores.options().dtype(at::kFloat).device(at::kCPU))); } auto x1_t = dets.select(1, 0).contiguous(); auto y1_t = dets.select(1, 1).contiguous(); auto x2_t = dets.select(1, 2).contiguous(); auto y2_t = dets.select(1, 3).contiguous(); auto scores_t = scores.clone(); at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1); auto ndets = dets.size(0); auto inds_t = at::arange(ndets, dets.options().dtype(at::kLong).device(at::kCPU)); auto x1 = x1_t.data_ptr(); auto y1 = y1_t.data_ptr(); auto x2 = x2_t.data_ptr(); auto y2 = y2_t.data_ptr(); auto s = scores_t.data_ptr(); auto inds = inds_t.data_ptr(); auto areas = areas_t.data_ptr(); for (int64_t i = 0; i < ndets; i++) { auto ix1 = x1[i]; auto iy1 = y1[i]; auto ix2 = x2[i]; auto iy2 = y2[i]; auto is = s[i]; auto ii = inds[i]; auto iarea = areas[i]; auto maxpos = scores_t.slice(0, i, ndets).argmax().item() + i; // add max box as a detection x1[i] = x1[maxpos]; y1[i] = y1[maxpos]; x2[i] = x2[maxpos]; y2[i] = y2[maxpos]; s[i] = s[maxpos]; inds[i] = inds[maxpos]; areas[i] = areas[maxpos]; // swap ith box with position of max box x1[maxpos] = ix1; y1[maxpos] = iy1; x2[maxpos] = ix2; y2[maxpos] = iy2; s[maxpos] = is; inds[maxpos] = ii; areas[maxpos] = iarea; ix1 = x1[i]; iy1 = y1[i]; ix2 = x2[i]; iy2 = y2[i]; iarea = areas[i]; // NMS iterations, note that ndets changes if detection boxes // fall below threshold for (int64_t j = i + 1; j < ndets; j++) { auto xx1 = std::max(ix1, x1[j]); auto yy1 = std::max(iy1, y1[j]); auto xx2 = std::min(ix2, x2[j]); auto yy2 = std::min(iy2, y2[j]); auto w = std::max(static_cast(0), xx2 - xx1 + 1); auto h = std::max(static_cast(0), yy2 - yy1 + 1); auto inter = w * h; auto ovr = inter / (iarea + areas[j] - inter); s[j] = s[j] * std::exp(- std::pow(ovr, 2.0) / sigma); // if box score falls below threshold, discard the box by // swapping with last box update ndets if (s[j] < threshold) { x1[j] = x1[ndets - 1]; y1[j] = y1[ndets - 1]; x2[j] = x2[ndets - 1]; y2[j] = y2[ndets - 1]; s[j] = s[ndets - 1]; inds[j] = inds[ndets - 1]; areas[j] = areas[ndets - 1]; j--; ndets--; } } } return std::make_pair(inds_t.slice(0, 0, ndets), scores_t.slice(0, 0, ndets)); } std::pair soft_nms_cpu(const at::Tensor& dets, const at::Tensor& scores, const float threshold, const float sigma) { std::pair result; AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "soft_nms", [&] { result = soft_nms_cpu_kernel(dets, scores, threshold, sigma); }); return result; }