# Reference: https://huggingface.co/spaces/haotiz/glip-zeroshot-demo/blob/main/app.py import requests import os from io import BytesIO from PIL import Image import numpy as np from pathlib import Path import gradio as gr import warnings warnings.filterwarnings("ignore") os.system("python setup.py build develop --user") from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo config_file = "configs/pretrain_new/desco_glip.yaml" weight_file = "MODEL/desco_glip_tiny.pth" # update the config options with the config file # manual override some options cfg.local_rank = 0 cfg.num_gpus = 1 cfg.merge_from_file(config_file) cfg.merge_from_list(["MODEL.WEIGHT", weight_file]) cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) glip_demo = GLIPDemo( cfg, min_image_size=800, confidence_threshold=0.7, show_mask_heatmaps=False ) config_file = "configs/pretrain_new/desco_fiber.yaml" weight_file = "MODEL/desco_fiber_base.pth" from copy import deepcopy cfg = deepcopy(cfg) cfg.merge_from_file(config_file) cfg.merge_from_list(["MODEL.WEIGHT", weight_file]) cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) fiber_demo = GLIPDemo( cfg, min_image_size=800, confidence_threshold=0.7, show_mask_heatmaps=False ) def predict(image, text, ground_tokens=""): ground_tokens = None if ground_tokens.strip() == "" else ground_tokens.strip().split(";") result, _ = glip_demo.run_on_web_image(deepcopy(image[:, :, [2, 1, 0]]), text, 0.5, ground_tokens) fiber_result, _ = fiber_demo.run_on_web_image(deepcopy(image[:, :, [2, 1, 0]]), text, 0.5, ground_tokens) return result[:, :, [2, 1, 0]], fiber_result[:, :, [2, 1, 0]] image = gr.inputs.Image() gr.Interface( description="Object Recognition with DesCo (https://github.com/liunian-harold-li/DesCo)", fn=predict, inputs=["image", "text", "text"], outputs=[ gr.outputs.Image( type="pil", label="DesCo-GLIP" ), gr.outputs.Image( type="pil", label="DesCo-FIBER" ), ], examples=[ ["./coco_000000281759.jpg", "A green umbrella. A pink striped umbrella. A plain white umbrella.", ""], ["./coco_000000281759.jpg", "a flowery top. A blue dress. An orange shirt .", ""], ["./coco_000000281759.jpg", "a car . An electricity box .", ""], ["./1.jpg", "a train besides sidewalk", "train;sidewalk"], ], article=Path("docs/intro.md").read_text() ).launch() # ).launch(server_name="0.0.0.0", server_port=7000, share=True)