# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn import torch.distributed as dist import maskrcnn_benchmark.utils.comm as comm from torch.autograd.function import Function class FrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def forward(self, x): scale = self.weight * self.running_var.rsqrt() bias = self.bias - self.running_mean * scale scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) return x * scale + bias class AllReduce(Function): @staticmethod def forward(ctx, input): input_list = [torch.zeros_like(input) for k in range(dist.get_world_size())] # Use allgather instead of allreduce since I don't trust in-place operations .. dist.all_gather(input_list, input, async_op=False) inputs = torch.stack(input_list, dim=0) return torch.sum(inputs, dim=0) @staticmethod def backward(ctx, grad_output): dist.all_reduce(grad_output, async_op=False) return grad_output class NaiveSyncBatchNorm2d(nn.BatchNorm2d): """ In PyTorch<=1.5, ``nn.SyncBatchNorm`` has incorrect gradient when the batch size on each worker is different. (e.g., when scale augmentation is used, or when it is applied to mask head). This is a slower but correct alternative to `nn.SyncBatchNorm`. Note: There isn't a single definition of Sync BatchNorm. When ``stats_mode==""``, this module computes overall statistics by using statistics of each worker with equal weight. The result is true statistics of all samples (as if they are all on one worker) only when all workers have the same (N, H, W). This mode does not support inputs with zero batch size. When ``stats_mode=="N"``, this module computes overall statistics by weighting the statistics of each worker by their ``N``. The result is true statistics of all samples (as if they are all on one worker) only when all workers have the same (H, W). It is slower than ``stats_mode==""``. Even though the result of this module may not be the true statistics of all samples, it may still be reasonable because it might be preferrable to assign equal weights to all workers, regardless of their (H, W) dimension, instead of putting larger weight on larger images. From preliminary experiments, little difference is found between such a simplified implementation and an accurate computation of overall mean & variance. """ def __init__(self, *args, stats_mode="", **kwargs): super().__init__(*args, **kwargs) assert stats_mode in ["", "N"] self._stats_mode = stats_mode def forward(self, input): if comm.get_world_size() == 1 or not self.training: return super().forward(input) B, C = input.shape[0], input.shape[1] mean = torch.mean(input, dim=[0, 2, 3]) meansqr = torch.mean(input * input, dim=[0, 2, 3]) if self._stats_mode == "": assert B > 0, 'SyncBatchNorm(stats_mode="") does not support zero batch size.' vec = torch.cat([mean, meansqr], dim=0) vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size()) mean, meansqr = torch.split(vec, C) momentum = self.momentum else: if B == 0: vec = torch.zeros([2 * C + 1], device=mean.device, dtype=mean.dtype) vec = vec + input.sum() # make sure there is gradient w.r.t input else: vec = torch.cat([mean, meansqr, torch.ones([1], device=mean.device, dtype=mean.dtype)], dim=0) vec = AllReduce.apply(vec * B) total_batch = vec[-1].detach() momentum = total_batch.clamp(max=1) * self.momentum # no update if total_batch is 0 total_batch = torch.max(total_batch, torch.ones_like(total_batch)) # avoid div-by-zero mean, meansqr, _ = torch.split(vec / total_batch, C) var = meansqr - mean * mean invstd = torch.rsqrt(var + self.eps) scale = self.weight * invstd bias = self.bias - mean * scale scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) self.running_mean += momentum * (mean.detach() - self.running_mean) self.running_var += momentum * (var.detach() - self.running_var) return input * scale + bias