File size: 80,996 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
import torch
import re
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import logging
import cv2
import math
import itertools
import collections
from torchvision.ops import nms


GlobalParams = collections.namedtuple(
    "GlobalParams",
    [
        "batch_norm_momentum",
        "batch_norm_epsilon",
        "dropout_rate",
        "num_classes",
        "width_coefficient",
        "depth_coefficient",
        "depth_divisor",
        "min_depth",
        "drop_connect_rate",
        "image_size",
    ],
)

# Parameters for an individual model block
BlockArgs = collections.namedtuple(
    "BlockArgs",
    ["kernel_size", "num_repeat", "input_filters", "output_filters", "expand_ratio", "id_skip", "stride", "se_ratio"],
)

# https://stackoverflow.com/a/18348004
# Change namedtuple defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)

# in the old version, g_simple_padding = False, which tries to align
# tensorflow's implementation, which is not required here.
g_simple_padding = True


class MaxPool2dStaticSamePadding(nn.Module):
    """

    created by Zylo117

    The real keras/tensorflow MaxPool2d with same padding

    """

    def __init__(self, kernel_size, stride):
        super().__init__()
        if g_simple_padding:
            self.pool = nn.MaxPool2d(kernel_size, stride, padding=(kernel_size - 1) // 2)
        else:
            assert ValueError()
            self.pool = nn.MaxPool2d(kernel_size, stride)
            self.stride = self.pool.stride
            self.kernel_size = self.pool.kernel_size

            if isinstance(self.stride, int):
                self.stride = [self.stride] * 2
            elif len(self.stride) == 1:
                self.stride = [self.stride[0]] * 2

            if isinstance(self.kernel_size, int):
                self.kernel_size = [self.kernel_size] * 2
            elif len(self.kernel_size) == 1:
                self.kernel_size = [self.kernel_size[0]] * 2

    def forward(self, x):
        if g_simple_padding:
            return self.pool(x)
        else:
            assert ValueError()
            h, w = x.shape[-2:]

            h_step = math.ceil(w / self.stride[1])
            v_step = math.ceil(h / self.stride[0])
            h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1)
            v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1)

            extra_h = h_cover_len - w
            extra_v = v_cover_len - h

            left = extra_h // 2
            right = extra_h - left
            top = extra_v // 2
            bottom = extra_v - top

            x = F.pad(x, [left, right, top, bottom])

            x = self.pool(x)
        return x


class Conv2dStaticSamePadding(nn.Module):
    """

    created by Zylo117

    The real keras/tensorflow conv2d with same padding

    """

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs):
        super().__init__()
        if g_simple_padding:
            assert kernel_size % 2 == 1
            assert dilation == 1
            self.conv = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size,
                stride=stride,
                bias=bias,
                groups=groups,
                padding=(kernel_size - 1) // 2,
            )
            self.stride = self.conv.stride
            if isinstance(self.stride, int):
                self.stride = [self.stride] * 2
            elif len(self.stride) == 1:
                self.stride = [self.stride[0]] * 2
            else:
                self.stride = list(self.stride)
        else:
            assert ValueError()
            self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, bias=bias, groups=groups)
            self.stride = self.conv.stride
            self.kernel_size = self.conv.kernel_size
            self.dilation = self.conv.dilation

            if isinstance(self.stride, int):
                self.stride = [self.stride] * 2
            elif len(self.stride) == 1:
                self.stride = [self.stride[0]] * 2

            if isinstance(self.kernel_size, int):
                self.kernel_size = [self.kernel_size] * 2
            elif len(self.kernel_size) == 1:
                self.kernel_size = [self.kernel_size[0]] * 2

    def forward(self, x):
        if g_simple_padding:
            return self.conv(x)
        else:
            assert ValueError()
            h, w = x.shape[-2:]

            h_step = math.ceil(w / self.stride[1])
            v_step = math.ceil(h / self.stride[0])
            h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1)
            v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1)

            extra_h = h_cover_len - w
            extra_v = v_cover_len - h

            left = extra_h // 2
            right = extra_h - left
            top = extra_v // 2
            bottom = extra_v - top

            x = F.pad(x, [left, right, top, bottom])

            x = self.conv(x)
            return x


class SeparableConvBlock(nn.Module):
    """

    created by Zylo117

    """

    def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False):
        super(SeparableConvBlock, self).__init__()
        if out_channels is None:
            out_channels = in_channels

        # Q: whether separate conv
        #  share bias between depthwise_conv and pointwise_conv
        #  or just pointwise_conv apply bias.
        # A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias.

        self.depthwise_conv = Conv2dStaticSamePadding(
            in_channels, in_channels, kernel_size=3, stride=1, groups=in_channels, bias=False
        )
        self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1)

        self.norm = norm
        if self.norm:
            # Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow
            self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3)

        self.activation = activation
        if self.activation:
            self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

    def forward(self, x):
        x = self.depthwise_conv(x)
        x = self.pointwise_conv(x)

        if self.norm:
            x = self.bn(x)

        if self.activation:
            x = self.swish(x)

        return x


class BiFPN(nn.Module):
    """

    modified by Zylo117

    """

    def __init__(

        self,

        num_channels,

        conv_channels,

        first_time=False,

        epsilon=1e-4,

        onnx_export=False,

        attention=True,

        adaptive_up=False,

    ):
        """



        Args:

            num_channels:

            conv_channels:

            first_time: whether the input comes directly from the efficientnet,

                        if True, downchannel it first, and downsample P5 to generate P6 then P7

            epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon

            onnx_export: if True, use Swish instead of MemoryEfficientSwish

        """
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        # Conv layers
        self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)

        # Feature scaling layers
        self.p6_upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.p5_upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.p4_upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.p3_upsample = nn.Upsample(scale_factor=2, mode="nearest")

        self.adaptive_up = adaptive_up

        self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

        self.first_time = first_time
        if self.first_time:
            self.p5_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

            if len(conv_channels) == 3:
                self.p5_to_p6 = nn.Sequential(
                    Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                    nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                    MaxPool2dStaticSamePadding(3, 2),
                )
            else:
                assert len(conv_channels) == 4
                self.p6_down_channel = nn.Sequential(
                    Conv2dStaticSamePadding(conv_channels[3], num_channels, 1),
                    nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                )

            self.p6_to_p7 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2))

            self.p4_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

        # Weight
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention

    def forward(self, inputs):
        """

        illustration of a minimal bifpn unit

            P7_0 -------------------------> P7_2 -------->

               |-------------|                ↑

                             ↓                |

            P6_0 ---------> P6_1 ---------> P6_2 -------->

               |-------------|--------------↑ ↑

                             ↓                |

            P5_0 ---------> P5_1 ---------> P5_2 -------->

               |-------------|--------------↑ ↑

                             ↓                |

            P4_0 ---------> P4_1 ---------> P4_2 -------->

               |-------------|--------------↑ ↑

                             |--------------↓ |

            P3_0 -------------------------> P3_2 -------->

        """

        # downsample channels using same-padding conv2d to target phase's if not the same
        # judge: same phase as target,
        # if same, pass;
        # elif earlier phase, downsample to target phase's by pooling
        # elif later phase, upsample to target phase's by nearest interpolation
        if self.attention:
            p3_out, p4_out, p5_out, p6_out, p7_out = self._forward_fast_attention(inputs)
        else:
            p3_out, p4_out, p5_out, p6_out, p7_out = self._forward(inputs)

        return p3_out, p4_out, p5_out, p6_out, p7_out

    def _forward_fast_attention(self, inputs):
        if self.first_time:
            if len(inputs) == 3:
                p3, p4, p5 = inputs
                p6_in = self.p5_to_p6(p5)
            else:
                p3, p4, p5, p6 = inputs
                p6_in = self.p6_down_channel(p6)

            p7_in = self.p6_to_p7(p6_in)

            p3_in = self.p3_down_channel(p3)
            p4_in = self.p4_down_channel(p4)
            p5_in = self.p5_down_channel(p5)
        else:
            # P3_0, P4_0, P5_0, P6_0 and P7_0
            p3_in, p4_in, p5_in, p6_in, p7_in = inputs

        # P7_0 to P7_2

        if not self.adaptive_up:
            # Weights for P6_0 and P7_0 to P6_1
            p6_w1 = self.p6_w1_relu(self.p6_w1)
            weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon)
            # Connections for P6_0 and P7_0 to P6_1 respectively
            p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in)))

            # Weights for P5_0 and P6_0 to P5_1
            p5_w1 = self.p5_w1_relu(self.p5_w1)
            weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon)
            # Connections for P5_0 and P6_0 to P5_1 respectively
            p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up)))

            # Weights for P4_0 and P5_0 to P4_1
            p4_w1 = self.p4_w1_relu(self.p4_w1)
            weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon)
            # Connections for P4_0 and P5_0 to P4_1 respectively
            p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up)))

            # Weights for P3_0 and P4_1 to P3_2
            p3_w1 = self.p3_w1_relu(self.p3_w1)
            weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon)
            # Connections for P3_0 and P4_1 to P3_2 respectively
            p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up)))
        else:
            # Weights for P6_0 and P7_0 to P6_1
            p6_w1 = self.p6_w1_relu(self.p6_w1)
            weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon)
            # Connections for P6_0 and P7_0 to P6_1 respectively
            p6_upsample = nn.Upsample(size=p6_in.shape[-2:])
            p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * p6_upsample(p7_in)))

            # Weights for P5_0 and P6_0 to P5_1
            p5_w1 = self.p5_w1_relu(self.p5_w1)
            weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon)
            # Connections for P5_0 and P6_0 to P5_1 respectively
            p5_upsample = nn.Upsample(size=p5_in.shape[-2:])
            p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * p5_upsample(p6_up)))

            # Weights for P4_0 and P5_0 to P4_1
            p4_w1 = self.p4_w1_relu(self.p4_w1)
            weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon)
            # Connections for P4_0 and P5_0 to P4_1 respectively
            p4_upsample = nn.Upsample(size=p4_in.shape[-2:])
            p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * p4_upsample(p5_up)))

            # Weights for P3_0 and P4_1 to P3_2
            p3_w1 = self.p3_w1_relu(self.p3_w1)
            weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon)
            p3_upsample = nn.Upsample(size=p3_in.shape[-2:])
            # Connections for P3_0 and P4_1 to P3_2 respectively
            p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * p3_upsample(p4_up)))

        if self.first_time:
            p4_in = self.p4_down_channel_2(p4)
            p5_in = self.p5_down_channel_2(p5)

        # Weights for P4_0, P4_1 and P3_2 to P4_2
        p4_w2 = self.p4_w2_relu(self.p4_w2)
        weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon)
        # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
        p4_out = self.conv4_down(
            self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out))
        )

        # Weights for P5_0, P5_1 and P4_2 to P5_2
        p5_w2 = self.p5_w2_relu(self.p5_w2)
        weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon)
        # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
        p5_out = self.conv5_down(
            self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out))
        )

        # Weights for P6_0, P6_1 and P5_2 to P6_2
        p6_w2 = self.p6_w2_relu(self.p6_w2)
        weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon)
        # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
        p6_out = self.conv6_down(
            self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out))
        )

        # Weights for P7_0 and P6_2 to P7_2
        p7_w2 = self.p7_w2_relu(self.p7_w2)
        weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon)
        # Connections for P7_0 and P6_2 to P7_2
        p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out)))

        return p3_out, p4_out, p5_out, p6_out, p7_out

    def _forward(self, inputs):
        if self.first_time:
            p3, p4, p5 = inputs

            p6_in = self.p5_to_p6(p5)
            p7_in = self.p6_to_p7(p6_in)

            p3_in = self.p3_down_channel(p3)
            p4_in = self.p4_down_channel(p4)
            p5_in = self.p5_down_channel(p5)

        else:
            # P3_0, P4_0, P5_0, P6_0 and P7_0
            p3_in, p4_in, p5_in, p6_in, p7_in = inputs

        # P7_0 to P7_2

        # Connections for P6_0 and P7_0 to P6_1 respectively
        p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in)))

        # Connections for P5_0 and P6_0 to P5_1 respectively
        p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up)))

        # Connections for P4_0 and P5_0 to P4_1 respectively
        p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up)))

        # Connections for P3_0 and P4_1 to P3_2 respectively
        p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up)))

        if self.first_time:
            p4_in = self.p4_down_channel_2(p4)
            p5_in = self.p5_down_channel_2(p5)

        # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
        p4_out = self.conv4_down(self.swish(p4_in + p4_up + self.p4_downsample(p3_out)))

        # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
        p5_out = self.conv5_down(self.swish(p5_in + p5_up + self.p5_downsample(p4_out)))

        # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
        p6_out = self.conv6_down(self.swish(p6_in + p6_up + self.p6_downsample(p5_out)))

        # Connections for P7_0 and P6_2 to P7_2
        p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out)))

        return p3_out, p4_out, p5_out, p6_out, p7_out


class Regressor(nn.Module):
    """

    modified by Zylo117

    """

    def __init__(self, in_channels, num_anchors, num_layers, onnx_export=False):
        super(Regressor, self).__init__()
        self.num_layers = num_layers
        self.num_layers = num_layers

        self.conv_list = nn.ModuleList(
            [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]
        )
        self.bn_list = nn.ModuleList(
            [
                nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)])
                for j in range(5)
            ]
        )
        self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False)
        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

    def forward(self, inputs):
        feats = []
        for feat, bn_list in zip(inputs, self.bn_list):
            for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list):
                feat = conv(feat)
                feat = bn(feat)
                feat = self.swish(feat)
            feat = self.header(feat)
            feat = feat.permute(0, 2, 3, 1)
            feat = feat.contiguous().view(feat.shape[0], -1, 4)

            feats.append(feat)

        feats = torch.cat(feats, dim=1)

        return feats


class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_variables[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))


class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        if torch._C._get_tracing_state():
            return x * torch.sigmoid(x)
        return SwishImplementation.apply(x)


class Swish(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


class Classifier(nn.Module):
    """

    modified by Zylo117

    """

    def __init__(self, in_channels, num_anchors, num_classes, num_layers, onnx_export=False, prior_prob=0.01):
        super(Classifier, self).__init__()
        self.num_anchors = num_anchors
        self.num_classes = num_classes
        self.num_layers = num_layers
        self.conv_list = nn.ModuleList(
            [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]
        )
        self.bn_list = nn.ModuleList(
            [
                nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)])
                for j in range(5)
            ]
        )
        self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False)

        prior_prob = prior_prob
        bias_value = -math.log((1 - prior_prob) / prior_prob)
        torch.nn.init.normal_(self.header.pointwise_conv.conv.weight, std=0.01)
        torch.nn.init.constant_(self.header.pointwise_conv.conv.bias, bias_value)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

    def forward(self, inputs):
        feats = []
        for feat, bn_list in zip(inputs, self.bn_list):
            for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list):
                feat = conv(feat)
                feat = bn(feat)
                feat = self.swish(feat)
            feat = self.header(feat)

            feat = feat.permute(0, 2, 3, 1)
            feat = feat.contiguous().view(
                feat.shape[0], feat.shape[1], feat.shape[2], self.num_anchors, self.num_classes
            )
            feat = feat.contiguous().view(feat.shape[0], -1, self.num_classes)

            feats.append(feat)

        feats = torch.cat(feats, dim=1)
        # feats = feats.sigmoid()

        return feats


class Conv2dDynamicSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow, for a dynamic image size"""

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
        super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
        raise ValueError("tend to be deprecated")
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


# TODO: it seems like the standard conv layer is good enough with proper padding
# parameters.
def get_same_padding_conv2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.

    Static padding is necessary for ONNX exporting of models."""
    if image_size is None:
        raise ValueError("not validated")
        return Conv2dDynamicSamePadding
    else:
        from functools import partial

        return partial(Conv2dStaticSamePadding, image_size=image_size)


def round_filters(filters, global_params):
    """Calculate and round number of filters based on depth multiplier."""
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """Round number of filters based on depth multiplier."""
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, p, training):
    """Drop connect."""
    if not training:
        return inputs
    batch_size = inputs.shape[0]
    keep_prob = 1 - p
    random_tensor = keep_prob
    random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
    binary_tensor = torch.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


class MBConvBlock(nn.Module):
    """

    Mobile Inverted Residual Bottleneck Block



    Args:

        block_args (namedtuple): BlockArgs, see above

        global_params (namedtuple): GlobalParam, see above



    Attributes:

        has_se (bool): Whether the block contains a Squeeze and Excitation layer.

    """

    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        if isinstance(s, (tuple, list)) and all([s0 == s[0] for s0 in s]):
            s = s[0]
        self._depthwise_conv = Conv2d(
            in_channels=oup,
            out_channels=oup,
            groups=oup,  # groups makes it depthwise
            kernel_size=k,
            stride=s,
            bias=False,
        )
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """

        :param inputs: input tensor

        :param drop_connect_rate: drop connect rate (float, between 0 and 1)

        :return: output of block

        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._expand_conv(inputs)
            x = self._bn0(x)
            x = self._swish(x)

        x = self._depthwise_conv(x)
        x = self._bn1(x)
        x = self._swish(x)

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_reduce(x_squeezed)
            x_squeezed = self._swish(x_squeezed)
            x_squeezed = self._se_expand(x_squeezed)
            x = torch.sigmoid(x_squeezed) * x

        x = self._project_conv(x)
        x = self._bn2(x)

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class BlockDecoder(object):
    """Block Decoder for readability, straight from the official TensorFlow repository"""

    @staticmethod
    def _decode_block_string(block_string):
        """Gets a block through a string notation of arguments."""
        assert isinstance(block_string, str)

        ops = block_string.split("_")
        options = {}
        for op in ops:
            splits = re.split(r"(\d.*)", op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        assert ("s" in options and len(options["s"]) == 1) or (
            len(options["s"]) == 2 and options["s"][0] == options["s"][1]
        )

        return BlockArgs(
            kernel_size=int(options["k"]),
            num_repeat=int(options["r"]),
            input_filters=int(options["i"]),
            output_filters=int(options["o"]),
            expand_ratio=int(options["e"]),
            id_skip=("noskip" not in block_string),
            se_ratio=float(options["se"]) if "se" in options else None,
            stride=[int(options["s"][0])],
        )

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            "r%d" % block.num_repeat,
            "k%d" % block.kernel_size,
            "s%d%d" % (block.strides[0], block.strides[1]),
            "e%s" % block.expand_ratio,
            "i%d" % block.input_filters,
            "o%d" % block.output_filters,
        ]
        if 0 < block.se_ratio <= 1:
            args.append("se%s" % block.se_ratio)
        if block.id_skip is False:
            args.append("noskip")
        return "_".join(args)

    @staticmethod
    def decode(string_list):
        """

        Decodes a list of string notations to specify blocks inside the network.



        :param string_list: a list of strings, each string is a notation of block

        :return: a list of BlockArgs namedtuples of block args

        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """

        Encodes a list of BlockArgs to a list of strings.



        :param blocks_args: a list of BlockArgs namedtuples of block args

        :return: a list of strings, each string is a notation of block

        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def efficientnet(

    width_coefficient=None,

    depth_coefficient=None,

    dropout_rate=0.2,

    drop_connect_rate=0.2,

    image_size=None,

    num_classes=1000,

):
    """Creates a efficientnet model."""

    blocks_args = [
        "r1_k3_s11_e1_i32_o16_se0.25",
        "r2_k3_s22_e6_i16_o24_se0.25",
        "r2_k5_s22_e6_i24_o40_se0.25",
        "r3_k3_s22_e6_i40_o80_se0.25",
        "r3_k5_s11_e6_i80_o112_se0.25",
        "r4_k5_s22_e6_i112_o192_se0.25",
        "r1_k3_s11_e6_i192_o320_se0.25",
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        # data_format='channels_last',  # removed, this is always true in PyTorch
        num_classes=num_classes,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None,
        image_size=image_size,
    )

    return blocks_args, global_params


def efficientnet_params(model_name):
    """Map EfficientNet model name to parameter coefficients."""
    params_dict = {
        # Coefficients:   width,depth,res,dropout
        "efficientnet-b0": (1.0, 1.0, 224, 0.2),
        "efficientnet-b1": (1.0, 1.1, 240, 0.2),
        "efficientnet-b2": (1.1, 1.2, 260, 0.3),
        "efficientnet-b3": (1.2, 1.4, 300, 0.3),
        "efficientnet-b4": (1.4, 1.8, 380, 0.4),
        "efficientnet-b5": (1.6, 2.2, 456, 0.4),
        "efficientnet-b6": (1.8, 2.6, 528, 0.5),
        "efficientnet-b7": (2.0, 3.1, 600, 0.5),
        "efficientnet-b8": (2.2, 3.6, 672, 0.5),
        "efficientnet-l2": (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


def get_model_params(model_name, override_params):
    """Get the block args and global params for a given model"""
    if model_name.startswith("efficientnet"):
        w, d, s, p = efficientnet_params(model_name)
        # note: all models have drop connect rate = 0.2
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s
        )
    else:
        raise NotImplementedError("model name is not pre-defined: %s" % model_name)
    if override_params:
        # ValueError will be raised here if override_params has fields not included in global_params.
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


url_map = {
    "efficientnet-b0": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b0-355c32eb.pth",
    "efficientnet-b1": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b1-f1951068.pth",
    "efficientnet-b2": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b2-8bb594d6.pth",
    "efficientnet-b3": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b3-5fb5a3c3.pth",
    "efficientnet-b4": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b4-6ed6700e.pth",
    "efficientnet-b5": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b5-b6417697.pth",
    "efficientnet-b6": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b6-c76e70fd.pth",
    "efficientnet-b7": "https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b7-dcc49843.pth",
}

url_map_advprop = {
    "efficientnet-b0": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b0-b64d5a18.pth",
    "efficientnet-b1": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b1-0f3ce85a.pth",
    "efficientnet-b2": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b2-6e9d97e5.pth",
    "efficientnet-b3": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b3-cdd7c0f4.pth",
    "efficientnet-b4": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b4-44fb3a87.pth",
    "efficientnet-b5": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b5-86493f6b.pth",
    "efficientnet-b6": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b6-ac80338e.pth",
    "efficientnet-b7": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b7-4652b6dd.pth",
    "efficientnet-b8": "https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b8-22a8fe65.pth",
}


def load_pretrained_weights(model, model_name, load_fc=True, advprop=False):
    """Loads pretrained weights, and downloads if loading for the first time."""
    # AutoAugment or Advprop (different preprocessing)
    url_map_ = url_map_advprop if advprop else url_map
    from torch.utils import model_zoo

    state_dict = model_zoo.load_url(url_map_[model_name], map_location=torch.device("cpu"))
    # state_dict = torch.load('../../weights/backbone_efficientnetb0.pth')
    if load_fc:
        ret = model.load_state_dict(state_dict, strict=False)
        print(ret)
    else:
        state_dict.pop("_fc.weight")
        state_dict.pop("_fc.bias")
        res = model.load_state_dict(state_dict, strict=False)
        assert set(res.missing_keys) == set(["_fc.weight", "_fc.bias"]), "issue loading pretrained weights"
    print("Loaded pretrained weights for {}".format(model_name))


class EfficientNet(nn.Module):
    """

    An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods



    Args:

        blocks_args (list): A list of BlockArgs to construct blocks

        global_params (namedtuple): A set of GlobalParams shared between blocks



    Example:

        model = EfficientNet.from_pretrained('efficientnet-b0')



    """

    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), "blocks_args should be a list"
        assert len(blocks_args) > 0, "block args must be greater than 0"
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params),
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params))
            if block_args.num_repeat > 1:
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params))

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_features(self, inputs):
        """Returns output of the final convolution layer"""

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)
            x = block(x, drop_connect_rate=drop_connect_rate)
        # Head
        x = self._swish(self._bn1(self._conv_head(x)))

        return x

    def forward(self, inputs):
        """Calls extract_features to extract features, applies final linear layer, and returns logits."""
        bs = inputs.size(0)
        # Convolution layers
        x = self.extract_features(inputs)

        # Pooling and final linear layer
        x = self._avg_pooling(x)
        x = x.view(bs, -1)
        x = self._dropout(x)
        x = self._fc(x)
        return x

    @classmethod
    def from_name(cls, model_name, override_params=None):
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name, override_params)
        return cls(blocks_args, global_params)

    @classmethod
    def from_pretrained(cls, model_name, load_weights=True, advprop=True, num_classes=1000, in_channels=3):
        model = cls.from_name(model_name, override_params={"num_classes": num_classes})
        if load_weights:
            load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000), advprop=advprop)
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size=model._global_params.image_size)
            out_channels = round_filters(32, model._global_params)
            model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        return model

    @classmethod
    def get_image_size(cls, model_name):
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name):
        """Validates model name."""
        valid_models = ["efficientnet-b" + str(i) for i in range(9)]
        if model_name not in valid_models:
            raise ValueError("model_name should be one of: " + ", ".join(valid_models))


class EfficientNetD(nn.Module):
    """

    modified by Zylo117

    """

    def __init__(self, compound_coef, load_weights=False):
        super().__init__()
        model = EfficientNet.from_pretrained(f"efficientnet-b{compound_coef}", load_weights)
        del model._conv_head
        del model._bn1
        del model._avg_pooling
        del model._dropout
        del model._fc
        self.model = model

    def forward(self, x):
        x = self.model._conv_stem(x)
        x = self.model._bn0(x)
        x = self.model._swish(x)
        feature_maps = []

        # TODO: temporarily storing extra tensor last_x and del it later might not be a good idea,
        #  try recording stride changing when creating efficientnet,
        #  and then apply it here.
        last_x = None
        for idx, block in enumerate(self.model._blocks):
            drop_connect_rate = self.model._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self.model._blocks)
            x = block(x, drop_connect_rate=drop_connect_rate)

            if tuple(block._depthwise_conv.stride) == (2, 2):
                feature_maps.append(last_x)
            elif idx == len(self.model._blocks) - 1:
                feature_maps.append(x)
            last_x = x
        del last_x
        return feature_maps[1:]


class Anchors(nn.Module):
    """

    adapted and modified from https://github.com/google/automl/blob/master/efficientdet/anchors.py by Zylo117

    """

    def __init__(self, anchor_scale=4.0, pyramid_levels=None, **kwargs):
        super().__init__()
        from qd.qd_common import print_frame_info

        print_frame_info()
        self.anchor_scale = anchor_scale

        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]

        self.strides = kwargs.get("strides", [2**x for x in self.pyramid_levels])
        self.scales = np.array(kwargs.get("scales", [2**0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))
        self.ratios = kwargs.get("ratios", [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])

        self.buffer = {}

    @torch.no_grad()
    def forward(self, image, dtype=torch.float32, features=None):
        """Generates multiscale anchor boxes.



        Args:

          image_size: integer number of input image size. The input image has the

            same dimension for width and height. The image_size should be divided by

            the largest feature stride 2^max_level.

          anchor_scale: float number representing the scale of size of the base

            anchor to the feature stride 2^level.

          anchor_configs: a dictionary with keys as the levels of anchors and

            values as a list of anchor configuration.



        Returns:

          anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all

            feature levels.

        Raises:

          ValueError: input size must be the multiple of largest feature stride.

        """
        image_shape = image.shape[2:]
        anchor_key = self.get_key("anchor", image_shape)
        stride_idx_key = self.get_key("anchor_stride_index", image_shape)

        if anchor_key in self.buffer:
            return {"stride_idx": self.buffer[stride_idx_key].detach(), "anchor": self.buffer[anchor_key].detach()}

        if dtype == torch.float16:
            dtype = np.float16
        else:
            dtype = np.float32

        boxes_all = []
        all_idx_strides = []
        for idx_stride, stride in enumerate(self.strides):
            boxes_level = []
            for scale, ratio in itertools.product(self.scales, self.ratios):
                if features is not None:
                    f_h, f_w = features[idx_stride].shape[-2:]
                    x = np.arange(stride / 2, stride * f_w, stride)
                    y = np.arange(stride / 2, stride * f_h, stride)
                else:
                    if image_shape[1] % stride != 0:
                        x_max = stride * ((image_shape[1] + stride - 1) // stride)
                        y_max = stride * ((image_shape[0] + stride - 1) // stride)
                    else:
                        x_max = image_shape[1]
                        y_max = image_shape[0]
                    x = np.arange(stride / 2, x_max, stride)
                    y = np.arange(stride / 2, y_max, stride)
                xv, yv = np.meshgrid(x, y)
                xv = xv.reshape(-1)
                yv = yv.reshape(-1)

                base_anchor_size = self.anchor_scale * stride * scale
                anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0
                anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0
                # y1,x1,y2,x2
                boxes = np.vstack(
                    (yv - anchor_size_y_2, xv - anchor_size_x_2, yv + anchor_size_y_2, xv + anchor_size_x_2)
                )
                boxes = np.swapaxes(boxes, 0, 1)
                boxes_level.append(np.expand_dims(boxes, axis=1))
            # concat anchors on the same level to the reshape NxAx4
            boxes_level = np.concatenate(boxes_level, axis=1)
            boxes_level = boxes_level.reshape([-1, 4])
            idx_strides = torch.tensor([idx_stride] * len(boxes_level))
            all_idx_strides.append(idx_strides)
            boxes_all.append(boxes_level)

        anchor_boxes = np.vstack(boxes_all)
        anchor_stride_indices = torch.cat(all_idx_strides).to(image.device)

        self.buffer[stride_idx_key] = anchor_stride_indices

        anchor_boxes = torch.from_numpy(anchor_boxes.astype(dtype)).to(image.device)
        anchor_boxes = anchor_boxes.unsqueeze(0)

        # save it for later use to reduce overhead
        self.buffer[anchor_key] = anchor_boxes

        return {"stride_idx": self.buffer[stride_idx_key], "anchor": self.buffer[anchor_key]}

    def get_key(self, hint, image_shape):
        return "{}_{}".format(hint, "_".join(map(str, image_shape)))


class EffNetFPN(nn.Module):
    def __init__(self, compound_coef=0, start_from=3):
        super().__init__()

        self.backbone_net = EfficientNetD(
            EfficientDetBackbone.backbone_compound_coef[compound_coef], load_weights=False
        )
        if start_from == 3:
            conv_channel_coef = EfficientDetBackbone.conv_channel_coef[compound_coef]
        else:
            conv_channel_coef = EfficientDetBackbone.conv_channel_coef2345[compound_coef]
        self.bifpn = nn.Sequential(
            *[
                BiFPN(
                    EfficientDetBackbone.fpn_num_filters[compound_coef],
                    conv_channel_coef,
                    True if _ == 0 else False,
                    attention=True if compound_coef < 6 else False,
                    adaptive_up=True,
                )
                for _ in range(EfficientDetBackbone.fpn_cell_repeats[compound_coef])
            ]
        )

        self.out_channels = EfficientDetBackbone.fpn_num_filters[compound_coef]

        self.start_from = start_from
        assert self.start_from in [2, 3]

    def forward(self, inputs):
        if self.start_from == 3:
            _, p3, p4, p5 = self.backbone_net(inputs)

            features = (p3, p4, p5)
            features = self.bifpn(features)
            return features
        else:
            p2, p3, p4, p5 = self.backbone_net(inputs)
            features = (p2, p3, p4, p5)
            features = self.bifpn(features)
            return features


class EfficientDetBackbone(nn.Module):
    backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6]
    fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384]
    conv_channel_coef = {
        # the channels of P3/P4/P5.
        0: [40, 112, 320],
        1: [40, 112, 320],
        2: [48, 120, 352],
        3: [48, 136, 384],
        4: [56, 160, 448],
        5: [64, 176, 512],
        6: [72, 200, 576],
        7: [72, 200, 576],
    }
    conv_channel_coef2345 = {
        # the channels of P2/P3/P4/P5.
        0: [24, 40, 112, 320],
        # to be determined for the following
        1: [24, 40, 112, 320],
        2: [24, 48, 120, 352],
        3: [32, 48, 136, 384],
        4: [32, 56, 160, 448],
        5: [40, 64, 176, 512],
        6: [72, 200],
        7: [72, 200],
    }
    fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8]

    def __init__(self, num_classes=80, compound_coef=0, load_weights=False, prior_prob=0.01, **kwargs):
        super(EfficientDetBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5]
        self.anchor_scale = [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0]
        self.aspect_ratios = kwargs.get("ratios", [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
        self.num_scales = len(kwargs.get("scales", [2**0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))

        num_anchors = len(self.aspect_ratios) * self.num_scales

        self.bifpn = nn.Sequential(
            *[
                BiFPN(
                    self.fpn_num_filters[self.compound_coef],
                    self.conv_channel_coef[compound_coef],
                    True if _ == 0 else False,
                    attention=True if compound_coef < 6 else False,
                    adaptive_up=kwargs.get("adaptive_up"),
                )
                for _ in range(self.fpn_cell_repeats[compound_coef])
            ]
        )

        self.num_classes = num_classes
        self.regressor = Regressor(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_layers=self.box_class_repeats[self.compound_coef],
        )
        self.classifier = Classifier(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_classes=num_classes,
            num_layers=self.box_class_repeats[self.compound_coef],
            prior_prob=prior_prob,
        )
        anchor_scale = self.anchor_scale[compound_coef]
        if kwargs.get("anchor_scale"):
            anchor_scale = kwargs.pop("anchor_scale")
        if "anchor_scale" in kwargs:
            del kwargs["anchor_scale"]
        self.anchors = Anchors(anchor_scale=anchor_scale, **kwargs)

        self.backbone_net = EfficientNetD(self.backbone_compound_coef[compound_coef], load_weights)

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()

    def forward(self, inputs):
        _, p3, p4, p5 = self.backbone_net(inputs)

        features = (p3, p4, p5)
        features = self.bifpn(features)

        regression = self.regressor(features)
        classification = self.classifier(features)
        anchors = self.anchors(inputs, inputs.dtype, features=features)

        return features, regression, classification, anchors

    def init_backbone(self, path):
        state_dict = torch.load(path)
        try:
            ret = self.load_state_dict(state_dict, strict=False)
            print(ret)
        except RuntimeError as e:
            print("Ignoring " + str(e) + '"')


def init_weights(model):
    for name, module in model.named_modules():
        is_conv_layer = isinstance(module, nn.Conv2d)

        if is_conv_layer:
            nn.init.kaiming_uniform_(module.weight.data)

            if module.bias is not None:
                module.bias.data.zero_()


def calc_iou(a, b):
    # a(anchor) [boxes, (y1, x1, y2, x2)]
    # b(gt, coco-style) [boxes, (x1, y1, x2, y2)]

    area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
    iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0])
    ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1])
    iw = torch.clamp(iw, min=0)
    ih = torch.clamp(ih, min=0)
    ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih
    ua = torch.clamp(ua, min=1e-8)
    intersection = iw * ih
    IoU = intersection / ua

    return IoU


class BBoxTransform(nn.Module):
    def forward(self, anchors, regression):
        """

        decode_box_outputs adapted from https://github.com/google/automl/blob/master/efficientdet/anchors.py



        Args:

            anchors: [batchsize, boxes, (y1, x1, y2, x2)]

            regression: [batchsize, boxes, (dy, dx, dh, dw)]



        Returns:



        """
        y_centers_a = (anchors[..., 0] + anchors[..., 2]) / 2
        x_centers_a = (anchors[..., 1] + anchors[..., 3]) / 2
        ha = anchors[..., 2] - anchors[..., 0]
        wa = anchors[..., 3] - anchors[..., 1]

        w = regression[..., 3].exp() * wa
        h = regression[..., 2].exp() * ha

        y_centers = regression[..., 0] * ha + y_centers_a
        x_centers = regression[..., 1] * wa + x_centers_a

        ymin = y_centers - h / 2.0
        xmin = x_centers - w / 2.0
        ymax = y_centers + h / 2.0
        xmax = x_centers + w / 2.0
        if len(anchors.shape) == 3:
            return torch.stack([xmin, ymin, xmax, ymax], dim=2)
        else:
            return torch.stack([xmin, ymin, xmax, ymax], dim=1)


class ClipBoxes(nn.Module):
    def __init__(self):
        super(ClipBoxes, self).__init__()

    def forward(self, boxes, img):
        batch_size, num_channels, height, width = img.shape

        boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
        boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)

        boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width - 1)
        boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height - 1)

        return boxes


def postprocess2(x, anchors, regression, classification, transformed_anchors, threshold, iou_threshold, max_box):
    anchors = anchors["anchor"]
    all_above_th = classification > threshold
    out = []
    num_image = x.shape[0]
    num_class = classification.shape[-1]

    # classification = classification.cpu()
    # transformed_anchors = transformed_anchors.cpu()
    # all_above_th = all_above_th.cpu()
    max_box_pre_nms = 1000
    for i in range(num_image):
        all_rois = []
        all_class_ids = []
        all_scores = []
        for c in range(num_class):
            above_th = all_above_th[i, :, c].nonzero()
            if len(above_th) == 0:
                continue
            above_prob = classification[i, above_th, c].squeeze(1)
            if len(above_th) > max_box_pre_nms:
                _, idx = above_prob.topk(max_box_pre_nms)
                above_th = above_th[idx]
                above_prob = above_prob[idx]
            transformed_anchors_per = transformed_anchors[i, above_th, :].squeeze(dim=1)
            from torchvision.ops import nms

            nms_idx = nms(transformed_anchors_per, above_prob, iou_threshold=iou_threshold)
            if len(nms_idx) > 0:
                all_rois.append(transformed_anchors_per[nms_idx])
                ids = torch.tensor([c] * len(nms_idx))
                all_class_ids.append(ids)
                all_scores.append(above_prob[nms_idx])

        if len(all_rois) > 0:
            rois = torch.cat(all_rois)
            class_ids = torch.cat(all_class_ids)
            scores = torch.cat(all_scores)
            if len(scores) > max_box:
                _, idx = torch.topk(scores, max_box)
                rois = rois[idx, :]
                class_ids = class_ids[idx]
                scores = scores[idx]
            out.append(
                {
                    "rois": rois,
                    "class_ids": class_ids,
                    "scores": scores,
                }
            )
        else:
            out.append(
                {
                    "rois": [],
                    "class_ids": [],
                    "scores": [],
                }
            )

    return out


def postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold):
    anchors = anchors["anchor"]
    transformed_anchors = regressBoxes(anchors, regression)
    transformed_anchors = clipBoxes(transformed_anchors, x)
    scores = torch.max(classification, dim=2, keepdim=True)[0]
    scores_over_thresh = (scores > threshold)[:, :, 0]
    out = []
    for i in range(x.shape[0]):
        if scores_over_thresh.sum() == 0:
            out.append(
                {
                    "rois": [],
                    "class_ids": [],
                    "scores": [],
                }
            )
            continue

        classification_per = classification[i, scores_over_thresh[i, :], ...].permute(1, 0)
        transformed_anchors_per = transformed_anchors[i, scores_over_thresh[i, :], ...]
        scores_per = scores[i, scores_over_thresh[i, :], ...]
        from torchvision.ops import nms

        anchors_nms_idx = nms(transformed_anchors_per, scores_per[:, 0], iou_threshold=iou_threshold)

        if anchors_nms_idx.shape[0] != 0:
            scores_, classes_ = classification_per[:, anchors_nms_idx].max(dim=0)
            boxes_ = transformed_anchors_per[anchors_nms_idx, :]

            out.append(
                {
                    "rois": boxes_,
                    "class_ids": classes_,
                    "scores": scores_,
                }
            )
        else:
            out.append(
                {
                    "rois": [],
                    "class_ids": [],
                    "scores": [],
                }
            )

    return out


def display(preds, imgs, obj_list, imshow=True, imwrite=False):
    for i in range(len(imgs)):
        if len(preds[i]["rois"]) == 0:
            continue

        for j in range(len(preds[i]["rois"])):
            (x1, y1, x2, y2) = preds[i]["rois"][j].detach().cpu().numpy().astype(np.int)
            logging.info((x1, y1, x2, y2))
            cv2.rectangle(imgs[i], (x1, y1), (x2, y2), (255, 255, 0), 2)
            # obj = obj_list[preds[i]['class_ids'][j]]
            # score = float(preds[i]['scores'][j])

            # cv2.putText(imgs[i], '{}, {:.3f}'.format(obj, score),
            # (x1, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
            # (255, 255, 0), 1)
            # break
        if imshow:
            cv2.imshow("image", imgs[i])
            cv2.waitKey(0)


def calculate_focal_loss2(classification, target_list, alpha, gamma):
    from maskrcnn_benchmark.layers.sigmoid_focal_loss import sigmoid_focal_loss_cuda

    cls_loss = sigmoid_focal_loss_cuda(classification, target_list.int(), gamma, alpha)
    return cls_loss


def calculate_focal_loss(classification, targets, alpha, gamma):
    classification = classification.sigmoid()
    device = classification.device
    alpha_factor = torch.ones_like(targets) * alpha
    alpha_factor = alpha_factor.to(device)

    alpha_factor = torch.where(torch.eq(targets, 1.0), alpha_factor, 1.0 - alpha_factor)
    focal_weight = torch.where(torch.eq(targets, 1.0), 1.0 - classification, classification)
    focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

    bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification))

    cls_loss = focal_weight * bce

    zeros = torch.zeros_like(cls_loss)
    zeros = zeros.to(device)
    cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros)
    return cls_loss.mean()


def calculate_giou(pred, gt):
    ax1, ay1, ax2, ay2 = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
    bx1, by1, bx2, by2 = gt[:, 0], gt[:, 1], gt[:, 2], gt[:, 3]
    a = (ax2 - ax1) * (ay2 - ay1)
    b = (bx2 - bx1) * (by2 - by1)
    max_x1, _ = torch.max(torch.stack([ax1, bx1], dim=1), dim=1)
    max_y1, _ = torch.max(torch.stack([ay1, by1], dim=1), dim=1)
    min_x2, _ = torch.min(torch.stack([ax2, bx2], dim=1), dim=1)
    min_y2, _ = torch.min(torch.stack([ay2, by2], dim=1), dim=1)
    inter = (min_x2 > max_x1) * (min_y2 > max_y1)
    inter = inter * (min_x2 - max_x1) * (min_y2 - max_y1)

    min_x1, _ = torch.min(torch.stack([ax1, bx1], dim=1), dim=1)
    min_y1, _ = torch.min(torch.stack([ay1, by1], dim=1), dim=1)
    max_x2, _ = torch.max(torch.stack([ax2, bx2], dim=1), dim=1)
    max_y2, _ = torch.max(torch.stack([ay2, by2], dim=1), dim=1)
    cover = (max_x2 - min_x1) * (max_y2 - min_y1)
    union = a + b - inter
    iou = inter / (union + 1e-5)
    giou = iou - (cover - union) / (cover + 1e-5)
    return giou


class FocalLoss(nn.Module):
    def __init__(

        self,

        alpha=0.25,

        gamma=2.0,

        cls_loss_type="FL",

        smooth_bce_pos=0.99,

        smooth_bce_neg=0.01,

        reg_loss_type="L1",

        at_least_1_assgin=False,

        neg_iou_th=0.4,

        pos_iou_th=0.5,

        cls_weight=1.0,

        reg_weight=1.0,

    ):
        super(FocalLoss, self).__init__()
        from qd.qd_common import print_frame_info

        print_frame_info()
        self.iter = 0
        self.reg_loss_type = reg_loss_type
        self.regressBoxes = BBoxTransform()
        if cls_loss_type == "FL":
            from qd.layers.loss import FocalLossWithLogitsNegLoss

            self.cls_loss = FocalLossWithLogitsNegLoss(alpha, gamma)
        elif cls_loss_type == "BCE":
            from qd.qd_pytorch import BCEWithLogitsNegLoss

            self.cls_loss = BCEWithLogitsNegLoss(reduction="sum")
        elif cls_loss_type == "SmoothBCE":
            from qd.layers.loss import SmoothBCEWithLogitsNegLoss

            self.cls_loss = SmoothBCEWithLogitsNegLoss(pos=smooth_bce_pos, neg=smooth_bce_neg)
        elif cls_loss_type == "SmoothFL":
            from qd.layers.loss import FocalSmoothBCEWithLogitsNegLoss

            self.cls_loss = FocalSmoothBCEWithLogitsNegLoss(
                alpha=alpha, gamma=2.0, pos=smooth_bce_pos, neg=smooth_bce_neg
            )
        else:
            raise NotImplementedError(cls_loss_type)
        self.at_least_1_assgin = at_least_1_assgin

        self.gt_total = 0
        self.gt_saved_by_at_least = 0

        self.neg_iou_th = neg_iou_th
        self.pos_iou_th = pos_iou_th

        self.cls_weight = cls_weight
        self.reg_weight = reg_weight

        self.buf = {}

    def forward(self, classifications, regressions, anchor_info, annotations, **kwargs):
        debug = (self.iter % 100) == 0
        self.iter += 1
        if debug:
            from collections import defaultdict

            debug_info = defaultdict(list)

        batch_size = classifications.shape[0]
        classification_losses = []
        regression_losses = []
        anchors = anchor_info["anchor"]
        anchor = anchors[0, :, :]  # assuming all image sizes are the same, which it is
        dtype = anchors.dtype

        anchor_widths = anchor[:, 3] - anchor[:, 1]
        anchor_heights = anchor[:, 2] - anchor[:, 0]
        anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths
        anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights

        # anchor_widths = anchor[:, 2] - anchor[:, 0]
        # anchor_heights = anchor[:, 3] - anchor[:, 1]
        # anchor_ctr_x = anchor[:, 0] + 0.5 * anchor_widths
        # anchor_ctr_y = anchor[:, 1] + 0.5 * anchor_heights
        device = classifications.device

        for j in range(batch_size):

            classification = classifications[j, :, :]
            regression = regressions[j, :, :]

            bbox_annotation = annotations[j]
            bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]

            # classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)

            if bbox_annotation.shape[0] == 0:
                # cls_loss = calculate_focal_loss2(classification,
                # torch.zeros(len(classification)), alpha,
                # gamma)
                # cls_loss = cls_loss.mean()
                cls_loss = torch.tensor(0).to(dtype).to(device)
                regression_losses.append(torch.tensor(0).to(dtype).to(device))
                classification_losses.append(cls_loss)
                continue

            IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4])

            IoU_max, IoU_argmax = torch.max(IoU, dim=1)
            if self.at_least_1_assgin:
                iou_max_gt, iou_argmax_gt = torch.max(IoU, dim=0)
                curr_saved = (iou_max_gt < self.pos_iou_th).sum()
                self.gt_saved_by_at_least += curr_saved
                self.gt_total += len(iou_argmax_gt)
                IoU_max[iou_argmax_gt] = 1.0
                IoU_argmax[iou_argmax_gt] = torch.arange(len(iou_argmax_gt)).to(device)

            # compute the loss for classification
            targets = torch.ones_like(classification) * -1
            targets = targets.to(device)

            targets[torch.lt(IoU_max, self.neg_iou_th), :] = 0

            positive_indices = torch.ge(IoU_max, self.pos_iou_th)

            num_positive_anchors = positive_indices.sum()

            assigned_annotations = bbox_annotation[IoU_argmax, :]

            targets[positive_indices, :] = 0
            targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1

            if debug:
                if num_positive_anchors > 0:
                    debug_info["pos_conf"].append(
                        classification[positive_indices, assigned_annotations[positive_indices, 4].long()].mean()
                    )
                debug_info["neg_conf"].append(classification[targets == 0].mean())
                stride_idx = anchor_info["stride_idx"]
                positive_stride_idx = stride_idx[positive_indices]
                pos_count_each_stride = torch.tensor([(positive_stride_idx == i).sum() for i in range(5)])
                if "cum_pos_count_each_stride" not in self.buf:
                    self.buf["cum_pos_count_each_stride"] = pos_count_each_stride
                else:
                    cum_pos_count_each_stride = self.buf["cum_pos_count_each_stride"]
                    cum_pos_count_each_stride += pos_count_each_stride
                    self.buf["cum_pos_count_each_stride"] = cum_pos_count_each_stride

            # cls_loss = calculate_focal_loss(classification, targets, alpha,
            # gamma)
            cls_loss = self.cls_loss(classification, targets)

            cls_loss = cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0)
            assert cls_loss == cls_loss
            classification_losses.append(cls_loss)

            if positive_indices.sum() > 0:
                assigned_annotations = assigned_annotations[positive_indices, :]
                if self.reg_loss_type == "L1":
                    anchor_widths_pi = anchor_widths[positive_indices]
                    anchor_heights_pi = anchor_heights[positive_indices]
                    anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
                    anchor_ctr_y_pi = anchor_ctr_y[positive_indices]

                    gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0]
                    gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1]
                    gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths
                    gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights

                    # efficientdet style
                    gt_widths = torch.clamp(gt_widths, min=1)
                    gt_heights = torch.clamp(gt_heights, min=1)

                    targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
                    targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
                    targets_dw = torch.log(gt_widths / anchor_widths_pi)
                    targets_dh = torch.log(gt_heights / anchor_heights_pi)

                    targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw))
                    targets = targets.t()

                    regression_diff = torch.abs(targets - regression[positive_indices, :])

                    regression_loss = torch.where(
                        torch.le(regression_diff, 1.0 / 9.0),
                        0.5 * 9.0 * torch.pow(regression_diff, 2),
                        regression_diff - 0.5 / 9.0,
                    ).mean()
                elif self.reg_loss_type == "GIOU":
                    curr_regression = regression[positive_indices, :]
                    curr_anchors = anchor[positive_indices]
                    curr_pred_xyxy = self.regressBoxes(curr_anchors, curr_regression)
                    regression_loss = 1.0 - calculate_giou(curr_pred_xyxy, assigned_annotations)
                    regression_loss = regression_loss.mean()
                    assert regression_loss == regression_loss
                else:
                    raise NotImplementedError
                regression_losses.append(regression_loss)
            else:
                if torch.cuda.is_available():
                    regression_losses.append(torch.tensor(0).to(dtype).cuda())
                else:
                    regression_losses.append(torch.tensor(0).to(dtype))
        if debug:
            if len(debug_info) > 0:
                logging.info(
                    "pos = {}; neg = {}, saved_ratio = {}/{}={:.1f}, "
                    "stride_info = {}".format(
                        torch.tensor(debug_info["pos_conf"]).mean(),
                        torch.tensor(debug_info["neg_conf"]).mean(),
                        self.gt_saved_by_at_least,
                        self.gt_total,
                        1.0 * self.gt_saved_by_at_least / self.gt_total,
                        self.buf["cum_pos_count_each_stride"],
                    )
                )
        return self.cls_weight * torch.stack(classification_losses).mean(
            dim=0, keepdim=True
        ), self.reg_weight * torch.stack(regression_losses).mean(dim=0, keepdim=True)


class ModelWithLoss(nn.Module):
    def __init__(self, model, criterion):
        super().__init__()
        self.criterion = criterion
        self.module = model

    def forward(self, *args):
        if len(args) == 2:
            imgs, annotations = args
        elif len(args) == 1:
            imgs, annotations = args[0][:2]
        _, regression, classification, anchors = self.module(imgs)
        cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations)
        return {"cls_loss": cls_loss, "reg_loss": reg_loss}


class TorchVisionNMS(nn.Module):
    def __init__(self, iou_threshold):
        super().__init__()
        self.iou_threshold = iou_threshold

    def forward(self, box, prob):
        nms_idx = nms(box, prob, iou_threshold=self.iou_threshold)
        return nms_idx


class PostProcess(nn.Module):
    def __init__(self, iou_threshold):
        super().__init__()
        self.nms = TorchVisionNMS(iou_threshold)

    def forward(self, x, anchors, regression, classification, transformed_anchors, threshold, max_box):
        all_above_th = classification > threshold
        out = []
        num_image = x.shape[0]
        num_class = classification.shape[-1]

        # classification = classification.cpu()
        # transformed_anchors = transformed_anchors.cpu()
        # all_above_th = all_above_th.cpu()
        max_box_pre_nms = 1000
        for i in range(num_image):
            all_rois = []
            all_class_ids = []
            all_scores = []
            for c in range(num_class):
                above_th = all_above_th[i, :, c].nonzero()
                if len(above_th) == 0:
                    continue
                above_prob = classification[i, above_th, c].squeeze(1)
                if len(above_th) > max_box_pre_nms:
                    _, idx = above_prob.topk(max_box_pre_nms)
                    above_th = above_th[idx]
                    above_prob = above_prob[idx]
                transformed_anchors_per = transformed_anchors[i, above_th, :].squeeze(dim=1)
                nms_idx = self.nms(transformed_anchors_per, above_prob)
                if len(nms_idx) > 0:
                    all_rois.append(transformed_anchors_per[nms_idx])
                    ids = torch.tensor([c] * len(nms_idx))
                    all_class_ids.append(ids)
                    all_scores.append(above_prob[nms_idx])

            if len(all_rois) > 0:
                rois = torch.cat(all_rois)
                class_ids = torch.cat(all_class_ids)
                scores = torch.cat(all_scores)
                if len(scores) > max_box:
                    _, idx = torch.topk(scores, max_box)
                    rois = rois[idx, :]
                    class_ids = class_ids[idx]
                    scores = scores[idx]
                out.append(
                    {
                        "rois": rois,
                        "class_ids": class_ids,
                        "scores": scores,
                    }
                )
            else:
                out.append(
                    {
                        "rois": [],
                        "class_ids": [],
                        "scores": [],
                    }
                )

        return out


class InferenceModel(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.module = model

        self.regressBoxes = BBoxTransform()
        self.clipBoxes = ClipBoxes()
        self.threshold = 0.01
        self.nms_threshold = 0.5
        self.max_box = 100
        self.debug = False
        self.post_process = PostProcess(self.nms_threshold)

    def forward(self, sample):
        features, regression, classification, anchor_info = self.module(sample["image"])
        anchors = anchor_info["anchor"]
        classification = classification.sigmoid()
        transformed_anchors = self.regressBoxes(anchors, regression)
        transformed_anchors = self.clipBoxes(transformed_anchors, sample["image"])

        preds = self.post_process(
            sample["image"], anchors, regression, classification, transformed_anchors, self.threshold, self.max_box
        )

        if self.debug:
            logging.info("debugging")
            imgs = sample["image"]
            imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
            imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8)
            imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs]
            display(preds, imgs, list(map(str, range(80))))

        for p, s in zip(preds, sample["scale"]):
            if len(p["rois"]) > 0:
                p["rois"] /= s
        return preds