Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
| 3 |
+
os.environ["HF_HOME"] = "/tmp"
|
| 4 |
+
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
import json
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import MT5ForConditionalGeneration, MT5Tokenizer
|
| 10 |
+
from sentence_transformers import SentenceTransformer, util
|
| 11 |
+
|
| 12 |
+
# Load dataset
|
| 13 |
+
with open("data/gpt2_ready_filtered.jsonl", "r", encoding="utf-8") as f:
|
| 14 |
+
data = [json.loads(line) for line in f]
|
| 15 |
+
texts = [item["text"] for item in data]
|
| 16 |
+
|
| 17 |
+
# Load model
|
| 18 |
+
model_name = "nurfarah57/SQ-MT5"
|
| 19 |
+
tokenizer = MT5Tokenizer.from_pretrained(model_name)
|
| 20 |
+
model = MT5ForConditionalGeneration.from_pretrained(model_name)
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
# Load sentence embedder
|
| 24 |
+
embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 25 |
+
embeddings = embedder.encode(texts, convert_to_tensor=True)
|
| 26 |
+
|
| 27 |
+
# FastAPI app
|
| 28 |
+
app = FastAPI(
|
| 29 |
+
title="Somali QA API",
|
| 30 |
+
description="Su’aal weydii oo hel jawaab laga raadshay dataset-ka ama laga sameeyay model.",
|
| 31 |
+
version="1.0"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Input schema
|
| 35 |
+
class QuestionRequest(BaseModel):
|
| 36 |
+
question: str
|
| 37 |
+
|
| 38 |
+
# Extract question/answer from dataset line
|
| 39 |
+
def extract_qa(text):
|
| 40 |
+
parts = text.split("\nJawaab:")
|
| 41 |
+
if len(parts) == 2:
|
| 42 |
+
return parts[0].replace("Su'aal:", "").strip(), parts[1].strip()
|
| 43 |
+
return None, None
|
| 44 |
+
|
| 45 |
+
# Match dataset semantically
|
| 46 |
+
def find_semantic_match(question, threshold=0.90):
|
| 47 |
+
user_emb = embedder.encode(question, convert_to_tensor=True)
|
| 48 |
+
hits = util.semantic_search(user_emb, embeddings, top_k=1)
|
| 49 |
+
if hits and hits[0][0]["score"] >= threshold:
|
| 50 |
+
idx = hits[0][0]["corpus_id"]
|
| 51 |
+
_, jawaab = extract_qa(texts[idx])
|
| 52 |
+
return jawaab
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
# Fallback generation
|
| 56 |
+
def generate_with_mt5(question):
|
| 57 |
+
prompt = f"su'aal: {question}"
|
| 58 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
outputs = model.generate(inputs["input_ids"], max_length=128)
|
| 61 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 62 |
+
|
| 63 |
+
# API endpoint
|
| 64 |
+
@app.post("/qa")
|
| 65 |
+
def answer_question(req: QuestionRequest):
|
| 66 |
+
if not req.question.strip():
|
| 67 |
+
raise HTTPException(status_code=400, detail="Su’aal lama helin.")
|
| 68 |
+
|
| 69 |
+
match = find_semantic_match(req.question)
|
| 70 |
+
if match:
|
| 71 |
+
return {"answer": match, "source": "dataset"}
|
| 72 |
+
|
| 73 |
+
generated = generate_with_mt5(req.question)
|
| 74 |
+
return {"answer": generated, "source": "model"}
|
| 75 |
+
|
| 76 |
+
# Root
|
| 77 |
+
@app.get("/")
|
| 78 |
+
def root():
|
| 79 |
+
return {"message": "✅ Somali QA API is running!"}
|