"""LangGraph Agent"""
import os
import tempfile
import cmath
import pandas as pd
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from typing import List, Dict, Any, Optional
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""
Multiply two integers.
Args:
a (int): The first integer.
b (int): The second integer.
Returns:
int: The product of a and b.
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""
Add two integers.
Args:
a (int): The first integer.
b (int): The second integer.
Returns:
int: The sum of a and b.
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""
Subtract one integer from another.
Args:
a (int): The integer to subtract from.
b (int): The integer to subtract.
Returns:
int: The result of a minus b.
"""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""
Divide one integer by another.
Args:
a (int): The numerator.
b (int): The denominator. Must not be zero.
Returns:
float: The result of a divided by b.
Raises:
ValueError: If b is zero.
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""
Compute the modulus (remainder) of two integers.
Args:
a (int): The dividend.
b (int): The divisor.
Returns:
int: The remainder after dividing a by b.
"""
return a % b
@tool
def power(a: float, b: float) -> float:
"""
Raise a number to the power of another number.
Args:
a (float): The base number.
b (float): The exponent.
Returns:
float: The result of a raised to the power of b.
"""
return a**b
@tool
def square_root(a: float) -> float | complex:
"""
Compute the square root of a number. Returns a complex number if input is negative.
Args:
a (float): The number to compute the square root of.
Returns:
float or complex: The square root of a. Complex if a < 0.
"""
if a >= 0:
return a**0.5
return cmath.sqrt(a)
### =============== DOCUMENT PROCESSING TOOLS =============== ###
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save text content to a file and return the file path.
Args:
content (str): The text content to save.
filename (str, optional): The name of the file. If not provided, a random name is generated.
Returns:
str: The file path where the content was saved.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file and answer a question about its data.
Args:
file_path (str): The path to the CSV file.
query (str): The question to answer about the data.
Returns:
str: The analysis result or error message.
"""
try:
df = pd.read_csv(file_path)
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file and answer a question about its data.
Args:
file_path (str): The path to the Excel file.
query (str): The question to answer about the data.
Returns:
str: The analysis result or error message.
"""
try:
df = pd.read_excel(file_path)
result = (
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
)
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
@tool
def wiki_search(input: str) -> str:
"""
Search Wikipedia for a query and return up to 2 results.
Args:
input (str): The search query string.
Returns:
str: A formatted string containing up to 2 Wikipedia search results.
"""
search_docs = WikipediaLoader(query=input, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(input: str) -> str:
"""
Search the web using Tavily and return up to 5 results.
Args:
input (str): The search query string.
Returns:
str: A formatted string containing up to 5 web search results.
"""
search_docs = TavilySearchResults(max_results=5).invoke(input)
formatted_search_docs = "\n\n---\n\n".join(
[
(
f'\n{doc.page_content}\n'
if hasattr(doc, "metadata") and hasattr(doc, "page_content")
else
f'\n{doc.get("content", doc.get("page_content", ""))}\n'
)
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arvix_search(input: str) -> str:
"""
Search Arxiv for a query and return up to 3 results.
Args:
input (str): The search query string.
Returns:
str: A formatted string containing up to 3 Arxiv search results.
"""
search_docs = ArxivLoader(query=input, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
#embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-exp-03-07")
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
power,
square_root,
wiki_search,
web_search,
arvix_search,
save_and_read_file,
analyze_csv_file,
analyze_excel_file,
# create_retriever_tool
]
# Build graph function
def build_graph(provider: str = "groq"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
# similar_question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
if similar_question:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
else:
example_msg = HumanMessage(
content="No similar questions found in the database.",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
#question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
# Build the graph
graph = build_graph(provider="google")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()