import torch from diffusers import UniPCMultistepScheduler, AutoencoderKL from diffusers.pipelines import StableDiffusionPipeline import gradio as gr import argparse from garment_adapter.garment_diffusion import ClothAdapter from pipelines.OmsDiffusionPipeline import OmsDiffusionPipeline parser = argparse.ArgumentParser(description='oms diffusion') parser.add_argument('--model_path', type=str, required=True) parser.add_argument('--enable_cloth_guidance', action="store_true") parser.add_argument('--pipe_path', type=str, default="SG161222/Realistic_Vision_V4.0_noVAE") args = parser.parse_args() device = "cuda" vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16) if args.enable_cloth_guidance: pipe = OmsDiffusionPipeline.from_pretrained(args.pipe_path, vae=vae, torch_dtype=torch.float16) else: pipe = StableDiffusionPipeline.from_pretrained(args.pipe_path, vae=vae, torch_dtype=torch.float16) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) full_net = ClothAdapter(pipe, args.model_path, device, args.enable_cloth_guidance) def process(cloth_image, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, width, height, sample_steps, scale, cloth_guidance_scale, seed): images, cloth_mask_image = full_net.generate(cloth_image, cloth_mask_image, prompt, a_prompt, num_samples, n_prompt, seed, scale, cloth_guidance_scale, sample_steps, height, width) return images, cloth_mask_image block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("##You can enlarge image resolution to get better face, but the cloth maybe lose control, we will release high-resolution checkpoint soon##") with gr.Row(): with gr.Column(): cloth_image = gr.Image(label="cloth Image", type="pil") cloth_mask_image = gr.Image(label="cloth mask Image, if not support, will be produced by inner segment algorithm", type="pil") prompt = gr.Textbox(label="Prompt", value='a photography of a model') run_button = gr.Button(value="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) height = gr.Slider(label="Height", minimum=256, maximum=1024, value=768, step=64) width = gr.Slider(label="Width", minimum=192, maximum=768, value=576, step=64) sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10., value=5. if args.enable_cloth_guidance else 2.5, step=0.1) cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=1, maximum=10., value=2.5, step=0.1, visible=args.enable_cloth_guidance) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1234) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, high quality') n_prompt = gr.Textbox(label="Negative Prompt", value='bare, monochrome, lowres, bad anatomy, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery") cloth_seg_image = gr.Image(label="cloth mask", type="pil", width=192, height=256) ips = [cloth_image, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, width, height, sample_steps, guidance_scale, cloth_guidance_scale, seed] run_button.click(fn=process, inputs=ips, outputs=[result_gallery, cloth_seg_image]) block.launch(server_name="0.0.0.0", server_port=7860, share=True)