import gradio as gr from gpt4all import GPT4All from urllib.request import urlopen import json import time from load_llms import model_choices, llm_intro, load_model # Construct chatbot def generate_response(model_name, message, chat_history): model = load_model(model_name) response = model.generate(message, max_tokens=100) chat_history.append((message, response)) return "", chat_history # Create Gradio UI with gr.Blocks() as demo: gr.Markdown("# GPT4All Chatbot") with gr.Row(): with gr.Column(scale=1): model_dropdown = gr.Dropdown( choices=model_choices(), multiselect=False, type="value", value="orca-mini-3b-gguf2-q4_0.gguf", label="LLMs to choose from" ) explanation = gr.Textbox(label="Model Description", interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf")) # Link the dropdown with the textbox to update the description based on the selected model model_dropdown.change(fn=llm_intro, inputs=model_dropdown, outputs=explanation) with gr.Column(scale=4): chatbot = gr.Chatbot(label="Chatroom", value=[(None, "How may I help you today?")], elem_id="chatbot") message = gr.Textbox(label="Message") message.submit(generate_response, inputs=[model_dropdown, message, chatbot], outputs=[message, chatbot]) # Launch the Gradio app demo.launch() # clear = gr.ClearButton([input_text, chatbot])