# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py import fvcore.nn.weight_init as weight_init from typing import Optional import torch from torch import nn, Tensor from torch.nn import functional as F from .position_encoding import PositionEmbeddingSine class SelfAttentionLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, tgt_mask, tgt_key_padding_mask, query_pos) return self.forward_post(tgt, tgt_mask, tgt_key_padding_mask, query_pos) class CrossAttentionLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False): super().__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, memory, memory_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(tgt, memory, memory_mask, memory_key_padding_mask, pos, query_pos) class FFNLayer(nn.Module): def __init__(self, d_model, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False): super().__init__() # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm = nn.LayerNorm(d_model) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt): tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt): tgt2 = self.norm(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt): if self.normalize_before: return self.forward_pre(tgt) return self.forward_post(tgt) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class MultiScaleMaskedTransformerDecoder(nn.Module): def __init__( self, in_channels, num_classes, mask_classification=True, hidden_dim=256, num_queries=100, nheads=8, dim_feedforward=2048, dec_layers=10, pre_norm=False, mask_dim=256, enforce_input_project=False ): super().__init__() assert mask_classification, "Only support mask classification model" self.mask_classification = mask_classification # positional encoding N_steps = hidden_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) # define Transformer decoder here self.num_heads = nheads self.num_layers = dec_layers self.transformer_self_attention_layers = nn.ModuleList() self.transformer_cross_attention_layers = nn.ModuleList() self.transformer_ffn_layers = nn.ModuleList() for _ in range(self.num_layers): self.transformer_self_attention_layers.append( SelfAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_cross_attention_layers.append( CrossAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_ffn_layers.append( FFNLayer( d_model=hidden_dim, dim_feedforward=dim_feedforward, dropout=0.0, normalize_before=pre_norm, ) ) self.decoder_norm = nn.LayerNorm(hidden_dim) self.num_queries = num_queries # learnable query features self.query_feat = nn.Embedding(num_queries, hidden_dim) # learnable query p.e. self.query_embed = nn.Embedding(num_queries, hidden_dim) # level embedding (we always use 3 scales) self.num_feature_levels = 3 self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) self.input_proj = nn.ModuleList() for _ in range(self.num_feature_levels): if in_channels != hidden_dim or enforce_input_project: self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1)) weight_init.c2_xavier_fill(self.input_proj[-1]) else: self.input_proj.append(nn.Sequential()) # output FFNs if self.mask_classification: self.class_embed = nn.Linear(hidden_dim, num_classes + 1) self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) def forward(self, x, mask_features, mask = None): #print(mask_features.shape, "!!") # x is a list of multi-scale feature assert len(x) == self.num_feature_levels src = [] pos = [] size_list = [] # disable mask, it does not affect performance del mask for i in range(self.num_feature_levels): size_list.append(x[i].shape[-2:]) pos.append(self.pe_layer(x[i], None).flatten(2)) src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None]) # flatten NxCxHxW to HWxNxC pos[-1] = pos[-1].permute(2, 0, 1) src[-1] = src[-1].permute(2, 0, 1) _, bs, _ = src[0].shape # QxNxC query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) predictions_class = [] predictions_mask = [] # prediction heads on learnable query features outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0]) predictions_class.append(outputs_class) predictions_mask.append(outputs_mask) for i in range(self.num_layers): level_index = i % self.num_feature_levels attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False # attention: cross-attention first output = self.transformer_cross_attention_layers[i]( output, src[level_index], memory_mask=attn_mask, memory_key_padding_mask=None, # here we do not apply masking on padded region pos=pos[level_index], query_pos=query_embed ) output = self.transformer_self_attention_layers[i]( output, tgt_mask=None, tgt_key_padding_mask=None, query_pos=query_embed ) # FFN output = self.transformer_ffn_layers[i]( output ) #print(output.shape, "??") outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels]) predictions_class.append(outputs_class) predictions_mask.append(outputs_mask) assert len(predictions_class) == self.num_layers + 1 out = { 'pred_logits': predictions_class[-1], 'pred_masks': predictions_mask[-1], 'aux_outputs': self._set_aux_loss( predictions_class if self.mask_classification else None, predictions_mask ) } return out def forward_prediction_heads(self, output, mask_features, attn_mask_target_size): decoder_output = self.decoder_norm(output) decoder_output = decoder_output.transpose(0, 1) outputs_class = self.class_embed(decoder_output) mask_embed = self.mask_embed(decoder_output) outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) # NOTE: prediction is of higher-resolution # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW] attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False) # must use bool type # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. #print('before', attn_mask.shape) #print(self.num_heads) attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool() #print('after', attn_mask.shape) attn_mask = attn_mask.detach() return outputs_class, outputs_mask, attn_mask @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_seg_masks): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. if self.mask_classification: return [ {"pred_logits": a, "pred_masks": b} for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1]) ] else: return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]