#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : resnet.py @Time : 2022/04/23 14:08:10 @Author : BQH @Version : 1.0 @Contact : raogx.vip@hotmail.com @License : (C)Copyright 2017-2018, Liugroup-NLPR-CASIA @Desc : Backbone ''' # here put the import lib import torch import torch.nn as nn from addict import Dict import torch.utils.model_zoo as model_zoo BN_MOMENTUM = 0.1 model_urls = {'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class InvertedResidual(nn.Module): def __init__(self, in_channels, hidden_dim, out_channels=3): super(InvertedResidual, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(hidden_dim, momentum=BN_MOMENTUM), nn.ReLU6(inplace=True), # dw # nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # nn.BatchNorm2d(hidden_dim, momentum=BN_MOMENTUM), # nn.ReLU(inplace=True), # pw-linear nn.Conv2d(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers): super(ResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM)) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, input_x): out = {} x = self.conv1(input_x) x = self.bn1(x) x = self.relu(x) feature1 = self.maxpool(x) feature2 = self.layer1(feature1) out['res2'] = feature2 feature3 = self.layer2(feature2) out['res3'] = feature3 feature4 = self.layer3(feature3) out['res4'] = feature4 feature5 = self.layer4(feature4) out['res5'] = feature5 return out def init_weights(self, num_layers=50): # url = model_urls['resnet{}'.format(num_layers)] # pretrained_state_dict = model_zoo.load_url(url, model_dir='/home/code/pytorch_model/') # print('=> loading pretrained model {}'.format(url)) pertained_model = r'/home/code/pytorch_model/resnet50-19c8e357.pth' pretrained_state_dict = torch.load(pertained_model) self.load_state_dict(pretrained_state_dict, strict=False) resnet_spec = {'resnet18': (BasicBlock, [2, 2, 2, 2]), 'resnet34': (BasicBlock, [3, 4, 6, 3]), 'resnet50': (Bottleneck, [3, 4, 6, 3]), 'resnet101': (Bottleneck, [3, 4, 23, 3]), 'resnet152': (Bottleneck, [3, 8, 36, 3])}