# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ MaskFormer criterion. """ import torch import numpy as np import torch.nn.functional as F import torch.distributed as dist from torch import nn import sys import os sys.path.append(os.path.dirname(__file__) + os.sep + '../') from .point_features import point_sample, get_uncertain_point_coords_with_randomness from .misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, get_world_size def dice_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(-1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_masks def sigmoid_ce_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). Returns: Loss tensor """ loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") return loss.mean(1).sum() / num_masks def sigmoid_focal_loss(inputs, targets, num_masks, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_masks def calculate_uncertainty(logits): """ We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is the number of foreground classes. The values are logits. Returns: scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ assert logits.shape[1] == 1 gt_class_logits = logits.clone() return -(torch.abs(gt_class_logits)) class SetCriterion(nn.Module): """This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, num_points, oversample_ratio, importance_sample_ratio, device): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses self.device = device empty_weight = torch.ones(self.num_classes + 1).to(device) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # pointwise mask loss parameters self.num_points = num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio def loss_labels(self, outputs, targets, indices, num_masks): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert "pred_logits" in outputs src_logits = outputs["pred_logits"].float() idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]).to(self.device) target_classes = torch.full(src_logits.shape[:2], 0, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {"loss_ce": loss_ce} return losses def loss_masks(self, outputs, targets, indices, num_masks): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] # src_masks = src_masks[src_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # =================================================================================== # No need to upsample predictions as we are using normalized coordinates :) # N x 1 x H x W # src_masks = src_masks[:, None] # target_masks = target_masks[:, None] # with torch.no_grad(): # # sample point_coords # point_coords = get_uncertain_point_coords_with_randomness( # src_masks, # lambda logits: calculate_uncertainty(logits), # self.num_points, # self.oversample_ratio, # self.importance_sample_ratio, # ) # # get gt labels # point_labels = point_sample( # target_masks, # point_coords, # align_corners=False, # ).squeeze(1) # point_logits = point_sample( # src_masks, # point_coords, # align_corners=False, # ).squeeze(1) # =================================================================================== point_logits = src_masks.flatten(1) point_labels = target_masks.flatten(1) losses = { "loss_mask": sigmoid_ce_loss(point_logits, point_labels, num_masks), # sigmoid_focal_loss(point_logits, point_labels, num_masks), # "loss_dice": dice_loss(point_logits, point_labels, num_masks) } del src_masks del target_masks return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def _get_binary_mask(self, target): y, x = target.size() target_onehot = torch.zeros(self.num_classes + 1, y, x).to(target.device) target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1) return target_onehot def get_loss(self, loss, outputs, targets, indices, num_masks): loss_map = { 'labels': self.loss_labels, 'masks': self.loss_masks, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_masks) def forward(self, outputs, gt_masks): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format gt_masks: [bs, h_net_output, w_net_output] """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} targets = self._get_targets(gt_masks) # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_masks = sum(len(t["labels"]) for t in targets) num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_masks) num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: for i, aux_outputs in enumerate(outputs["aux_outputs"]): indices = self.matcher(aux_outputs, targets) for loss in self.losses: l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses def _get_targets(self, gt_masks): targets = [] for mask in gt_masks: binary_masks = self._get_binary_mask(mask) cls_label = torch.unique(mask) labels = cls_label[1:] binary_masks = binary_masks[labels] targets.append({'masks': binary_masks, 'labels': labels}) return targets def __repr__(self): head = "Criterion " + self.__class__.__name__ body = [ "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)), "losses: {}".format(self.losses), "weight_dict: {}".format(self.weight_dict), "num_classes: {}".format(self.num_classes), "eos_coef: {}".format(self.eos_coef), "num_points: {}".format(self.num_points), "oversample_ratio: {}".format(self.oversample_ratio), "importance_sample_ratio: {}".format(self.importance_sample_ratio), ] _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines) class Criterion(object): def __init__(self, num_classes, alpha=0.5, gamma=2, weight=None, ignore_index=0): self.num_classes = num_classes self.alpha = alpha self.gamma = gamma self.weight = weight self.ignore_index = ignore_index self.smooth = 1e-5 self.ce_fn = nn.CrossEntropyLoss(weight=self.weight, ignore_index=self.ignore_index, reduction='none') def get_loss(self, outputs, gt_masks): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format gt_masks: [bs, h_net_output, w_net_output] """ loss_labels = 0.0 loss_masks = 0.0 loss_dices = 0.0 num = gt_masks.shape[0] pred_logits = [outputs["pred_logits"].float()] # [bs, num_query, num_classes + 1] pred_masks = [outputs['pred_masks'].float()] # [bs, num_query, h, w] targets = self._get_targets(gt_masks, pred_logits[0].shape[1], pred_logits[0].device) for aux_output in outputs['aux_outputs']: pred_logits.append(aux_output["pred_logits"].float()) pred_masks.append(aux_output["pred_masks"].float()) gt_label = targets['labels'] # [bs, num_query] gt_mask_list = targets['masks'] for mask_cls, pred_mask in zip(pred_logits, pred_masks): loss_labels += F.cross_entropy(mask_cls.transpose(1, 2), gt_label) # loss_masks += self.focal_loss(pred_result, gt_masks.to(pred_result.device)) loss_dices += self.dice_loss(pred_mask, gt_mask_list) return loss_labels/num, loss_dices/num def binary_dice_loss(self, inputs, targets): inputs = inputs.sigmoid() inputs = inputs.flatten(1) targets = targets.flatten(1) numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets) denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :] loss = 1 - (numerator + 1) / (denominator + 1) return loss.mean() def dice_loss(self, predict, targets): bs = predict.shape[0] total_loss = 0 for i in range(bs): pred_mask = predict[i] tgt_mask = targets[i].to(predict.device) dice_loss_value = self.binary_dice_loss(pred_mask, tgt_mask) total_loss += dice_loss_value return total_loss/bs def focal_loss(self, preds, labels): """ preds: [bs, num_class + 1, h, w] labels: [bs, h, w] """ logpt = -self.ce_fn(preds, labels) pt = torch.exp(logpt) loss = -((1 - pt) ** self.gamma) * self.alpha * logpt return loss.mean() def _get_binary_mask(self, target): y, x = target.size() target_onehot = torch.zeros(self.num_classes + 1, y, x) target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1) return target_onehot def _get_targets(self, gt_masks, num_query, device): binary_masks = [] gt_labels = [] for mask in gt_masks: mask_onehot = self._get_binary_mask(mask) cls_label = torch.unique(mask) labels = torch.full((num_query,), 0, dtype=torch.int64, device=gt_masks.device) labels[:len(cls_label)] = cls_label binary_masks.append(mask_onehot[cls_label]) gt_labels.append(labels) return {"labels": torch.stack(gt_labels).to(device), "masks": binary_masks}