import os import argparse import torch import json import evaluation import numpy as np from models.clip import clip from evaluation import PACScore, RefPACScore from models import open_clip _MODELS = { "ViT-B/32": "checkpoints/clip_ViT-B-32.pth", "open_clip_ViT-L/14": "checkpoints/openClip_ViT-L-14.pth" } def compute_scores(model, preprocess, image_ids, candidates, references, args): gen = {} gts = {} ims_cs = list() gen_cs = list() gts_cs = list() all_scores = dict() model.eval() for i, (im_i, gts_i, gen_i) in enumerate(zip(image_ids, references, candidates)): gen['%d' % (i)] = [gen_i, ] gts['%d' % (i)] = gts_i ims_cs.append(im_i) gen_cs.append(gen_i) gts_cs.append(gts_i) gts = evaluation.PTBTokenizer.tokenize(gts) gen = evaluation.PTBTokenizer.tokenize(gen) all_scores_metrics = evaluation.get_all_metrics(gts, gen) for k, v in all_scores_metrics.items(): if k == 'BLEU': all_scores['BLEU-1'] = v[0] all_scores['BLEU-4'] = v[-1] else: all_scores[k] = v # PAC-S _, pac_scores, candidate_feats, len_candidates = PACScore( model, preprocess, ims_cs, gen_cs, device, w=2.0) all_scores['PAC-S'] = np.mean(pac_scores) # RefPAC-S if args.compute_refpac: _, per_instance_text_text = RefPACScore( model, gts_cs, candidate_feats, device, torch.tensor(len_candidates)) refpac_scores = 2 * pac_scores * per_instance_text_text / \ (pac_scores + per_instance_text_text) all_scores['RefPAC-S'] = np.mean(refpac_scores) return all_scores if __name__ == '__main__': # Argument parsing parser = argparse.ArgumentParser(description='PAC-S evaluation') parser.add_argument('--clip_model', type=str, default='ViT-B/32', choices=['ViT-B/32', 'open_clip_ViT-L/14']) parser.add_argument('--image_dir', type=str, default='example/images') parser.add_argument('--candidates_json', type=str, default='example/good_captions.json') parser.add_argument('--references_json', type=str, default='example/refs.json') parser.add_argument('--compute_refpac', action='store_true') args = parser.parse_args() device = "cuda" if torch.cuda.is_available() else "cpu" image_ids = [img_id for img_id in os.listdir(args.image_dir)] with open(args.candidates_json) as f: candidates = json.load(f) candidates = [candidates[cid.split('.')[0]] for cid in image_ids] with open(args.references_json) as f: references = json.load(f) references = [references[cid.split('.')[0]] for cid in image_ids] image_ids = [os.path.join(args.image_dir, img_id) for img_id in image_ids] if args.clip_model.startswith('open_clip'): print("Using Open CLIP Model: " + args.clip_model) model, _, preprocess = open_clip.create_model_and_transforms( 'ViT-L-14', pretrained='laion2b_s32b_b82k') else: print("Using CLIP Model: " + args.clip_model) model, preprocess = clip.load(args.clip_model, device=device) model = model.to(device) model = model.float() checkpoint = torch.load(_MODELS[args.clip_model]) model.load_state_dict(checkpoint['state_dict']) model.eval() all_scores = compute_scores( model, preprocess, image_ids, candidates, references, args) for k, v in all_scores.items(): print('%s: %.4f' % (k, v))