import pathlib from typing import Optional, Tuple import numpy as np from PIL import Image from config import RunConfig def load_images(cfg: RunConfig, save_path: Optional[pathlib.Path] = None) -> Tuple[Image.Image, Image.Image]: image_style = load_size(cfg.app_image_path) image_struct = load_size(cfg.struct_image_path) return image_style, image_struct def load_size(image_path: pathlib.Path, left: int = 0, right: int = 0, top: int = 0, bottom: int = 0, size: int = 512) -> Image.Image: if type(image_path) is str or type(image_path) is pathlib.PosixPath: image = np.array(Image.open(image_path).convert('RGB')) else: image = image_path h, w, c = image.shape left = min(left, w - 1) right = min(right, w - left - 1) top = min(top, h - left - 1) bottom = min(bottom, h - top - 1) image = image[top:h - bottom, left:w - right] h, w, c = image.shape if h < w: offset = (w - h) // 2 image = image[:, offset:offset + h] elif w < h: offset = (h - w) // 2 image = image[offset:offset + w] image = np.array(Image.fromarray(image).resize((size, size))) return image def save_generated_masks(model, cfg: RunConfig): tensor2im(model.image_app_mask_32).save(cfg.output_path / f"mask_style_32.png") tensor2im(model.image_struct_mask_32).save(cfg.output_path / f"mask_struct_32.png") tensor2im(model.image_app_mask_64).save(cfg.output_path / f"mask_style_64.png") tensor2im(model.image_struct_mask_64).save(cfg.output_path / f"mask_struct_64.png") def tensor2im(x) -> Image.Image: return Image.fromarray(x.cpu().numpy().astype(np.uint8) * 255)