def masked_adain(content_feat, style_feat, content_mask, style_mask): assert (content_feat.size()[:2] == style_feat.size()[:2]) size = content_feat.size() style_mean, style_std = calc_mean_std(style_feat, mask=style_mask) content_mean, content_std = calc_mean_std(content_feat, mask=content_mask) normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) style_normalized_feat = normalized_feat * style_std.expand(size) + style_mean.expand(size) return content_feat * (1 - content_mask) + style_normalized_feat * content_mask def calc_mean_std(feat, eps=1e-5, mask=None): # eps is a small value added to the variance to avoid divide-by-zero. size = feat.size() if len(size) == 2: return calc_mean_std_2d(feat, eps, mask) assert (len(size) == 3) C = size[0] if mask is not None: feat_var = feat.view(C, -1)[:, mask.view(-1) == 1].var(dim=1) + eps feat_std = feat_var.sqrt().view(C, 1, 1) feat_mean = feat.view(C, -1)[:, mask.view(-1) == 1].mean(dim=1).view(C, 1, 1) else: feat_var = feat.view(C, -1).var(dim=1) + eps feat_std = feat_var.sqrt().view(C, 1, 1) feat_mean = feat.view(C, -1).mean(dim=1).view(C, 1, 1) return feat_mean, feat_std def calc_mean_std_2d(feat, eps=1e-5, mask=None): # eps is a small value added to the variance to avoid divide-by-zero. size = feat.size() assert (len(size) == 2) C = size[0] if mask is not None: feat_var = feat.view(C, -1)[:, mask.view(-1) == 1].var(dim=1) + eps feat_std = feat_var.sqrt().view(C, 1) feat_mean = feat.view(C, -1)[:, mask.view(-1) == 1].mean(dim=1).view(C, 1) else: feat_var = feat.view(C, -1).var(dim=1) + eps feat_std = feat_var.sqrt().view(C, 1) feat_mean = feat.view(C, -1).mean(dim=1).view(C, 1) return feat_mean, feat_std