from dataclasses import dataclass from pathlib import Path from typing import NamedTuple, Optional class Range(NamedTuple): start: int end: int @dataclass class RunConfig: # Appearance image path app_image_path: Path # Struct image path struct_image_path: Path # Domain name (e.g., buildings, animals) domain_name: Optional[str] = None # Output path output_path: Path = Path('./output') # Random seed seed: int = 42 # Input prompt for inversion (will use domain name as default) prompt: Optional[str] = None # Number of timesteps num_timesteps: int = 100 # Whether to use a binary mask for performing AdaIN use_masked_adain: bool = True # Timesteps to apply cross-attention on 64x64 layers cross_attn_64_range: Range = Range(start=10, end=90) # Timesteps to apply cross-attention on 32x32 layers cross_attn_32_range: Range = Range(start=10, end=70) # Timesteps to apply AdaIn adain_range: Range = Range(start=20, end=100) # Guidance scale guidance_scale: float = 7.5 # Swap guidance scale swap_guidance_scale: float = 3.5 # Attention contrasting strength contrast_strength: float = 1.67 # Object nouns to use for self-segmentation (will use the domain name as default) object_noun: Optional[str] = None # Whether to load previously saved inverted latent codes load_latents: bool = True # Number of steps to skip in the denoising process (used value from original edit-friendly DDPM paper) skip_steps: int = 32 def __post_init__(self): self.output_path = self.output_path / self.domain_name self.output_path.mkdir(parents=True, exist_ok=True) # Handle the domain name, prompt, and object nouns used for masking, etc. if self.use_masked_adain and self.domain_name is None: raise ValueError("Must provide --domain_name and --prompt when using masked AdaIN") if not self.use_masked_adain and self.domain_name is None: self.domain_name = "object" if self.prompt is None: self.prompt = f"A photo of a {self.domain_name}" if self.object_noun is None: self.object_noun = self.domain_name # Define the paths to store the inverted latents to self.latents_path = Path(self.output_path) / "latents" self.latents_path.mkdir(parents=True, exist_ok=True) self.app_latent_save_path = self.latents_path / f"{self.app_image_path.stem}.pt" self.struct_latent_save_path = self.latents_path / f"{self.struct_image_path.stem}.pt"