import io import torch import numpy as np import gradio as gr import matplotlib.pyplot as plt from transformers import AutoFeatureExtractor, YolosForObjectDetection from PIL import Image COLORS = [ [0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], ] def process_class_list(classes_string: str): if classes_string == "": return [] classes_list = classes_string.split(",") classes_list = [x.strip() for x in classes_list] return classes_list def model_inference(img, prob_threshold, classes_to_show): feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/yolos-small-dwr") model = YolosForObjectDetection.from_pretrained(f"hustvl/yolos-small-dwr") img = Image.fromarray(img) pixel_values = feature_extractor(img, return_tensors="pt").pixel_values with torch.no_grad(): outputs = model(pixel_values, output_attentions=True) probas = outputs.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > prob_threshold target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0) postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) bboxes_scaled = postprocessed_outputs[0]["boxes"] classes_list = process_class_list(classes_to_show) res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list) return res_img def plot_results(pil_img, prob, boxes, model, classes_list): plt.figure(figsize=(16, 10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): cl = p.argmax() object_class = model.config.id2label[cl.item()] if len(classes_list) > 0: if object_class not in classes_list: continue ax.add_patch( plt.Rectangle( (xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3 ) ) text = f"{object_class}: {p[cl]:0.2f}" ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) plt.axis("off") return fig2img(plt.gcf()) def fig2img(fig): buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img description = """Upload an image and get the predicted classes""" title = """Object Detection""" image_in = gr.components.Image(label="Upload an image") image_out = gr.components.Image() prob_threshold_slider = gr.components.Slider( minimum=0, maximum=1.0, step=0.01, value=0.7, label="Probability Threshold" ) classes_to_show = gr.components.Textbox( placeholder="e.g. car, dog", label="Classes to filter (leave empty to detect all classes)", ) inputs = [image_in, prob_threshold_slider, classes_to_show] examples = ["CTH.png", "carplane.webp"] gr.Interface(fn=model_inference, inputs=inputs, outputs=image_out, title=title, examples=examples, description=description).launch()