import tensorflow as tf #inception_net = tf.keras.applications.MobileNetV2() import requests # Download human-readable labels for ImageNet. #response = requests.get("https://git.io/JJkYN") #labels = response.text.split("\n") model.load("./Pikachu_and_Raichu.h5") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = model(inp) prediction = model(inp).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences import gradio as gr gr.Interface(fn=classify_image, inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=2)).launch()