File size: 6,920 Bytes
94f372a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import torch.nn as nn
import pandas as pd

from models.networks.utils import UnormGPS


class HybridHead(nn.Module):
    """Classification head followed by regression head for the network."""

    def __init__(self, final_dim, quadtree_path, use_tanh, scale_tanh):
        super().__init__()
        self.final_dim = final_dim
        self.use_tanh = use_tanh
        self.scale_tanh = scale_tanh

        self.unorm = UnormGPS()

        if quadtree_path is not None:
            quadtree = pd.read_csv(quadtree_path)
            self.init_quadtree(quadtree)

    def init_quadtree(self, quadtree):
        quadtree[["min_lat", "max_lat"]] /= 90.0
        quadtree[["min_lon", "max_lon"]] /= 180.0
        self.register_buffer(
            "cell_center",
            0.5 * torch.tensor(quadtree[["max_lat", "max_lon"]].values)
            + 0.5 * torch.tensor(quadtree[["min_lat", "min_lon"]].values),
        )
        self.register_buffer(
            "cell_size",
            torch.tensor(quadtree[["max_lat", "max_lon"]].values)
            - torch.tensor(quadtree[["min_lat", "min_lon"]].values),
        )

    def forward(self, x, gt_label):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """

        classification_logits = x[..., : self.final_dim]
        classification = classification_logits.argmax(dim=-1)

        regression = x[..., self.final_dim :]

        if self.use_tanh:
            regression = self.scale_tanh * torch.tanh(regression)

        regression = regression.view(regression.shape[0], -1, 2)

        if self.training:
            regression = torch.gather(
                regression,
                1,
                gt_label.unsqueeze(-1).unsqueeze(-1).expand(regression.shape[0], 1, 2),
            )[:, 0, :]
            size = 2.0 / self.cell_size[gt_label]
            center = self.cell_center[gt_label]
            gps = (
                self.cell_center[gt_label] + regression * self.cell_size[gt_label] / 2.0
            )
        else:
            regression = torch.gather(
                regression,
                1,
                classification.unsqueeze(-1)
                .unsqueeze(-1)
                .expand(regression.shape[0], 1, 2),
            )[:, 0, :]
            size = 2.0 / self.cell_size[classification]
            center = self.cell_center[classification]
            gps = (
                self.cell_center[classification]
                + regression * self.cell_size[classification] / 2.0
            )

        gps = self.unorm(gps)

        return {
            "label": classification_logits,
            "gps": gps,
            "size": size,
            "center": center,
            "reg": regression,
        }

class HybridHeadCentroid(nn.Module):
    """Classification head followed by regression head for the network."""

    def __init__(self, final_dim, quadtree_path, use_tanh, scale_tanh):
        super().__init__()
        self.final_dim = final_dim
        self.use_tanh = use_tanh
        self.scale_tanh = scale_tanh

        self.unorm = UnormGPS()
        if quadtree_path is not None:
            quadtree = pd.read_csv(quadtree_path)
            self.init_quadtree(quadtree)

    def init_quadtree(self, quadtree):
        quadtree[["min_lat", "max_lat", "mean_lat"]] /= 90.0
        quadtree[["min_lon", "max_lon", "mean_lon"]] /= 180.0
        self.cell_center = torch.tensor(quadtree[["mean_lat", "mean_lon"]].values)
        self.cell_size_up = torch.tensor(quadtree[["max_lat", "max_lon"]].values) - torch.tensor(quadtree[["mean_lat", "mean_lon"]].values)
        self.cell_size_down = torch.tensor(quadtree[["mean_lat", "mean_lon"]].values) - torch.tensor(quadtree[["min_lat", "min_lon"]].values)

    def forward(self, x, gt_label):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """
        classification_logits = x[..., : self.final_dim]
        classification = classification_logits.argmax(dim=-1)
        self.cell_size_up = self.cell_size_up.to(classification.device)
        self.cell_center = self.cell_center.to(classification.device)
        self.cell_size_down = self.cell_size_down.to(classification.device)

        regression = x[..., self.final_dim :]

        if self.use_tanh:
            regression = self.scale_tanh * torch.tanh(regression)

        regression = regression.view(regression.shape[0], -1, 2)

        if self.training:
            regression = torch.gather(
                regression,
                1,
                gt_label.unsqueeze(-1).unsqueeze(-1).expand(regression.shape[0], 1, 2),
            )[:, 0, :]
            size = torch.where(
                regression > 0,
                self.cell_size_up[gt_label],
                self.cell_size_down[gt_label],
            )
            center = self.cell_center[gt_label]
            gps = self.cell_center[gt_label] + regression * size
        else:
            regression = torch.gather(
                regression,
                1,
                classification.unsqueeze(-1)
                .unsqueeze(-1)
                .expand(regression.shape[0], 1, 2),
            )[:, 0, :]
            size = torch.where(
                regression > 0,
                self.cell_size_up[classification],
                self.cell_size_down[classification],
            )
            center = self.cell_center[classification]
            gps = self.cell_center[classification] + regression * size

        gps = self.unorm(gps)

        return {
            "label": classification_logits,
            "gps": gps,
            "size": 1.0 / size,
            "center": center,
            "reg": regression,
        }


class SharedHybridHead(HybridHead):
    """Classification head followed by SHARED regression head for the network."""

    def forward(self, x, gt_label):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """

        classification_logits = x[..., : self.final_dim]
        classification = classification_logits.argmax(dim=-1)

        regression = x[..., self.final_dim :]

        if self.use_tanh:
            regression = self.scale_tanh * torch.tanh(regression)

        if self.training:
            gps = (
                self.cell_center[gt_label] + regression * self.cell_size[gt_label] / 2.0
            )
        else:
            gps = (
                self.cell_center[classification]
                + regression * self.cell_size[classification] / 2.0
            )

        gps = self.unorm(gps)

        return {"label": classification_logits, "gps": gps}