import torch from gfpgan.archs.gfpganv1_arch import FacialComponentDiscriminator, GFPGANv1, StyleGAN2GeneratorSFT from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean, StyleGAN2GeneratorCSFT def test_stylegan2generatorsft(): """Test arch: StyleGAN2GeneratorSFT.""" # model init and forward (gpu) if torch.cuda.is_available(): net = StyleGAN2GeneratorSFT( out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, resample_kernel=(1, 3, 3, 1), lr_mlp=0.01, narrow=1, sft_half=False).cuda().eval() style = torch.rand((1, 512), dtype=torch.float32).cuda() condition1 = torch.rand((1, 512, 8, 8), dtype=torch.float32).cuda() condition2 = torch.rand((1, 512, 16, 16), dtype=torch.float32).cuda() condition3 = torch.rand((1, 512, 32, 32), dtype=torch.float32).cuda() conditions = [condition1, condition1, condition2, condition2, condition3, condition3] output = net([style], conditions) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # -------------------- with return_latents ----------------------- # output = net([style], conditions, return_latents=True) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 1 # check latent assert output[1][0].shape == (8, 512) # -------------------- with randomize_noise = False ----------------------- # output = net([style], conditions, randomize_noise=False) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # -------------------- with truncation = 0.5 and mixing----------------------- # output = net([style, style], conditions, truncation=0.5, truncation_latent=style) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None def test_gfpganv1(): """Test arch: GFPGANv1.""" # model init and forward (gpu) if torch.cuda.is_available(): net = GFPGANv1( out_size=32, num_style_feat=512, channel_multiplier=1, resample_kernel=(1, 3, 3, 1), decoder_load_path=None, fix_decoder=True, # for stylegan decoder num_mlp=8, lr_mlp=0.01, input_is_latent=False, different_w=False, narrow=1, sft_half=True).cuda().eval() img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() output = net(img) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 3 # check out_rgbs for intermediate loss assert output[1][0].shape == (1, 3, 8, 8) assert output[1][1].shape == (1, 3, 16, 16) assert output[1][2].shape == (1, 3, 32, 32) # -------------------- with different_w = True ----------------------- # net = GFPGANv1( out_size=32, num_style_feat=512, channel_multiplier=1, resample_kernel=(1, 3, 3, 1), decoder_load_path=None, fix_decoder=True, # for stylegan decoder num_mlp=8, lr_mlp=0.01, input_is_latent=False, different_w=True, narrow=1, sft_half=True).cuda().eval() img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() output = net(img) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 3 # check out_rgbs for intermediate loss assert output[1][0].shape == (1, 3, 8, 8) assert output[1][1].shape == (1, 3, 16, 16) assert output[1][2].shape == (1, 3, 32, 32) def test_facialcomponentdiscriminator(): """Test arch: FacialComponentDiscriminator.""" # model init and forward (gpu) if torch.cuda.is_available(): net = FacialComponentDiscriminator().cuda().eval() img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() output = net(img) assert len(output) == 2 assert output[0].shape == (1, 1, 8, 8) assert output[1] is None # -------------------- return intermediate features ----------------------- # output = net(img, return_feats=True) assert len(output) == 2 assert output[0].shape == (1, 1, 8, 8) assert len(output[1]) == 2 assert output[1][0].shape == (1, 128, 16, 16) assert output[1][1].shape == (1, 256, 8, 8) def test_stylegan2generatorcsft(): """Test arch: StyleGAN2GeneratorCSFT.""" # model init and forward (gpu) if torch.cuda.is_available(): net = StyleGAN2GeneratorCSFT( out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=1, sft_half=False).cuda().eval() style = torch.rand((1, 512), dtype=torch.float32).cuda() condition1 = torch.rand((1, 512, 8, 8), dtype=torch.float32).cuda() condition2 = torch.rand((1, 512, 16, 16), dtype=torch.float32).cuda() condition3 = torch.rand((1, 512, 32, 32), dtype=torch.float32).cuda() conditions = [condition1, condition1, condition2, condition2, condition3, condition3] output = net([style], conditions) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # -------------------- with return_latents ----------------------- # output = net([style], conditions, return_latents=True) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 1 # check latent assert output[1][0].shape == (8, 512) # -------------------- with randomize_noise = False ----------------------- # output = net([style], conditions, randomize_noise=False) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # -------------------- with truncation = 0.5 and mixing----------------------- # output = net([style, style], conditions, truncation=0.5, truncation_latent=style) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None def test_gfpganv1clean(): """Test arch: GFPGANv1Clean.""" # model init and forward (gpu) if torch.cuda.is_available(): net = GFPGANv1Clean( out_size=32, num_style_feat=512, channel_multiplier=1, decoder_load_path=None, fix_decoder=True, # for stylegan decoder num_mlp=8, input_is_latent=False, different_w=False, narrow=1, sft_half=True).cuda().eval() img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() output = net(img) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 3 # check out_rgbs for intermediate loss assert output[1][0].shape == (1, 3, 8, 8) assert output[1][1].shape == (1, 3, 16, 16) assert output[1][2].shape == (1, 3, 32, 32) # -------------------- with different_w = True ----------------------- # net = GFPGANv1Clean( out_size=32, num_style_feat=512, channel_multiplier=1, decoder_load_path=None, fix_decoder=True, # for stylegan decoder num_mlp=8, input_is_latent=False, different_w=True, narrow=1, sft_half=True).cuda().eval() img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() output = net(img) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 3 # check out_rgbs for intermediate loss assert output[1][0].shape == (1, 3, 8, 8) assert output[1][1].shape == (1, 3, 16, 16) assert output[1][2].shape == (1, 3, 32, 32)