import gradio as gr import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=False, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) def predict(audio, language): generate_kwargs = { #"task": 'translate', "language": language, "return_timestamps": True, } result = result = pipe(audio, generate_kwargs=generate_kwargs) return result["text"] demo = gr.Interface( fn=predict, inputs=[ gr.Audio(sources=["microphone", "upload"], type="filepath"), gr.Textbox(lines=1, placeholder="Japanese", label="Language"), ], title="Whisper Large V3 Demo", flagging_mode="never", outputs="text") demo.launch(share=True)