import fasttext from huggingface_hub import hf_hub_download import gradio as gr import numpy as np model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") model = fasttext.load_model(model_path) def predict(text, top): labels, probabilities = model.predict(text, k=top) cleaned_labels = [label.replace('__label__', '') for label in labels] result = dict(zip(cleaned_labels, np.array(probabilities))) #result = sorted(result, key=lambda x: x[1], reverse=True) return result demo = gr.Interface( fn=predict, inputs=[ gr.Textbox(lines=1, placeholder="Text", label="Content"), gr.Number(value=5, info='number of predictions that should be returned', minimum=1, maximum=100, label="Top"), ], title="Language Identification Demo", flagging_mode="never", outputs=gr.Label(label="Result")) demo.launch(share=True, show_api=True)