import os import torch from PIL import Image from torchvision import transforms import gradio as gr os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True) model.eval() # Download an example image from the pytorch website torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "GHOSTNET" description = "Gradio demo for GHOSTNET, Efficient networks by generating more features from cheap operations. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

GhostNet: More Features from Cheap Operations | Github Repo

" examples = [ ['dog.jpg'] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()